Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2018 vyšlo tiskem 27. 6. 2018. V elektronické verzi na webu od 27. 7. 2018. 

Téma: Kabely, vodiče, kabelová technika; Nářadí, nástroje a zařízení pro práci s kabely

Hlavní článek
Parametrizace obvodových modelů lithiových akumulátorů pro elektromobilitu
Smart Cities (3. část – 1. díl)

Číslo 4/2018 vyšlo tiskem 30. 7. 2018. V elektronické verzi na webu 31. 8. 2018.

Pro osvěžení paměti
Excentrická svítidla Reného Roubíčka z let 1965 až 1977
Základy fotometrie – 1. část
Velká postava české vědy pobělohorské doby: lékař, filozof, přírodovědec a fyzik Jan Marek Marci z Kronlandu

Účinky a užití optického záření
Světlo a cirkadiánní rytmy

Aktuality

Úspěch studentské formule týmu eForce FEE Prague Formula Studentská formule týmu eForce FEE Prague Formula z Fakulty elektrotechnické ČVUT v Praze…

ČEZ ESCO získala svou historicky největší zakázku v osvětlení ČEZ Energetické služby, dceřiná společnost ČEZ ESCO, dodá osvětlení pro 59 obchodů…

Energetici v Dukovanech spustili čtvrtý blok, elektřinu vyrábí všechny bloky V Jaderné elektrárně Dukovany energetici spustili čtvrtý výrobní blok. Ukončili tak…

Nejlepší studenti 2018 nalezeni Do finálového kola 8. ročníku soutěže Nejlepší student, které se konalo 20. června 2018 v…

Více aktualit

Materiál pro příští generaci raketových motorů

31.03.2017 | Rice University | news.rice.edu

Kompozitní vlákna budoucnosti, ze kterých bude vyroben raketový motor příští generace, by měla být podle výzkumníků „střapatá”.

Výzkumníci z Rice University, ve spolupráci s vědci z NASA, vyvinuli „střapatá vlákna” z karbidu křemíku, jež mají stejné vlastnosti jako suchý zip a odolávají podmínkám, kterým musí čelit materiály v kosmickém prostoru.

Nový materiál pro raketové motory

Vlákna zesilují kompozity používané v moderních raketových motorech, které musí odolávat teplotám až 1 600 stupňů Celsia. Alternativu představují keramické kompozity, které využívají vlákna z karbidu křemíku k posílení vlastností materiálu, ale u těchto kompozitů je riziko vzniku prasklin nebo zkřehnutí při působení kyslíku.

Výzkumníkům z Rice University se podařilo zapustit nanotrubičky a nanodráty z karbidu křemíku do povrchu vláken, které využívá NASA. Nechráněné části vláken jsou střapaté a působí jako háčky a smyčky, které jsou tak typické pro suchý zip. V tomto případě vše probíhá v nanoměřítku.

Celý článek na Rice University

Image Credit: Ajayan Research Group

-jk-