Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 11/2017 vyšlo tiskem 6. 11. 2017. V elektronické verzi na webu od 27. 11. 2017. 

Téma: Elektrické rozváděče a rozváděčová technika; Točivé elektrické stroje

Hlavní článek
Analýza účinku geometrických charakteristik CFD simulací na teplotní pole sinusového filtru
On-line optimalizácia komutačných uhlov prúdu vo fázach BLDC motora

Číslo 5/2017 vyšlo tiskem 18. 9. 2017. V elektronické verzi na webu bude 18. 9. 2017.

Svítidla a světelné přístroje
MAYBE STYLE představuje LED designová svítidla německého výrobce Lightnet
TREVOS – nová svítidla pro průmysl i kanceláře
Kolik typů LED panelů vyrábí MODUS?
Inteligentní LED svítidlo RENO PROFI

Osvětlení interiérů
Světlo v bytovém interiéru – otázky a odpovědi

Aktuality

ŠKODA AUTO bude od roku 2020 v Mladé Boleslavi vyrábět vozy s čistě elektrickým pohonem ŠKODA AUTO bude vozy s čistě elektrickým pohonem vyrábět v závodě v Mladé Boleslavi. Již…

Soutěž o nejlepší realizovaný projekt KNX instalace Spolek KNX národní skupina České republiky, z. s. vyhlásil soutěž o nejlepší projekt…

Slovensko bude partnerskou zemí MSV 2018 Příští rok se chystají oslavy několika kulatých výročí včetně 100 let od založení…

ABB na MSV 2017 v Brně vystavuje stavební kameny továrny budoucnosti Společnost ABB na Mezinárodním strojírenském veletrhu 2017 v hale G2/30 představuje…

Více aktualit

Materiál pro příští generaci raketových motorů

31.03.2017 | Rice University | news.rice.edu

Kompozitní vlákna budoucnosti, ze kterých bude vyroben raketový motor příští generace, by měla být podle výzkumníků „střapatá”.

Výzkumníci z Rice University, ve spolupráci s vědci z NASA, vyvinuli „střapatá vlákna” z karbidu křemíku, jež mají stejné vlastnosti jako suchý zip a odolávají podmínkám, kterým musí čelit materiály v kosmickém prostoru.

Nový materiál pro raketové motory

Vlákna zesilují kompozity používané v moderních raketových motorech, které musí odolávat teplotám až 1 600 stupňů Celsia. Alternativu představují keramické kompozity, které využívají vlákna z karbidu křemíku k posílení vlastností materiálu, ale u těchto kompozitů je riziko vzniku prasklin nebo zkřehnutí při působení kyslíku.

Výzkumníkům z Rice University se podařilo zapustit nanotrubičky a nanodráty z karbidu křemíku do povrchu vláken, které využívá NASA. Nechráněné části vláken jsou střapaté a působí jako háčky a smyčky, které jsou tak typické pro suchý zip. V tomto případě vše probíhá v nanoměřítku.

Celý článek na Rice University

Image Credit: Ajayan Research Group

-jk-