Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2019 vyšlo tiskem 26. 6. 2019. V elektronické verzi na webu 26. 7. 2019. 

Téma: Kabely, vodiče a kabelová technika; Nářadí, nástroje a zařízení pro práci s kabely

Hlavní článek
Správa aktiv a potřeba diagnostiky v Průmyslu 4.0

Číslo 3/2019 vyšlo tiskem 11. 6. 2019. V elektronické verzi na webu 15. 7. 2019.

Veletrhy a výstavy
Euroluce 2019 očima designérky
Výstava Světlo v architektuře 2019
Amper 2019 v zajetí „chytrých“ technologií

Pro osvěžení paměti
Osvětlovací sklo z Kamenného pahorku

Aktuality

Digitální továrna 2.0 na MSV 2019 Digitální továrna 2.0 je jedním z hlavních témat Mezinárodního strojírenského veletrhu…

Historicky nejvyšší grant Evropské unie dostal česko-slovenský energetický projekt ACON Společnosti E.ON Distribuce a Západoslovenská distribuční (ZSD) získaly od Evropské…

Viceprezidentem asociace ENTSO-E zvolen člen představenstva ČEPS, a.s., Zbyněk Boldiš Zbyněk Boldiš, člen představenstva ČEPS, a.s., byl zvolen do funkce viceprezidenta…

Drony z Fakulty elektrotechnické ČVUT v Praze budou obhajovat vítězství v Abu Dhabi Utkají se o hlavní cenu 1 milion dolarů. Testy systému spolupracujících autonomních dronů…

Více aktualit

Materiál pro příští generaci raketových motorů

31.03.2017 | Rice University | news.rice.edu

Kompozitní vlákna budoucnosti, ze kterých bude vyroben raketový motor příští generace, by měla být podle výzkumníků „střapatá”.

Výzkumníci z Rice University, ve spolupráci s vědci z NASA, vyvinuli „střapatá vlákna” z karbidu křemíku, jež mají stejné vlastnosti jako suchý zip a odolávají podmínkám, kterým musí čelit materiály v kosmickém prostoru.

Nový materiál pro raketové motory

Vlákna zesilují kompozity používané v moderních raketových motorech, které musí odolávat teplotám až 1 600 stupňů Celsia. Alternativu představují keramické kompozity, které využívají vlákna z karbidu křemíku k posílení vlastností materiálu, ale u těchto kompozitů je riziko vzniku prasklin nebo zkřehnutí při působení kyslíku.

Výzkumníkům z Rice University se podařilo zapustit nanotrubičky a nanodráty z karbidu křemíku do povrchu vláken, které využívá NASA. Nechráněné části vláken jsou střapaté a působí jako háčky a smyčky, které jsou tak typické pro suchý zip. V tomto případě vše probíhá v nanoměřítku.

Celý článek na Rice University

Image Credit: Ajayan Research Group

-jk-