Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 2/2019 vyšlo tiskem 13. 2. 2019. V elektronické verzi na webu 11. 3. 2019. 

Téma: Elektrické přístroje – spínací, jisticí, ochranné, signalizační a speciální

Hlavní článek
Perspektivní topologie výkonových měničů
Smart Cities (7. část)

Číslo 1/2019 vyšlo tiskem 4. 2. 2019. V elektronické verzi na webu 5. 3. 2019.

Veletrhy a výstavy
Pozvánka na výstavu SVĚTLO V ARCHITEKTUŘE
Prolight + Sound 2019: pojďte s dobou
Světlo na veletrhu For Arch 2018

Veřejné osvětlení
Světla měst a obcí 2018 – setkání u kulatého stolu

Aktuality

50. konferencia elektrotechnikov Slovenska SEZ-KES Vás pozýva na jubilejnú 50. konferenciu elektrotechnikov Slovenska, ktorá sa…

Do přípravy Národní strategie umělé inteligence se zapojí široká veřejnost Ministerstvo průmyslu a obchodu spustilo konzultaci s odbornou veřejností, firmami i…

Ještě větší FOR PASIV a FOR WOOD 2019 Sedmý veletrh nízkoenergetických, pasivních a nulových staveb FOR PASIV, který proběhne v…

Novým děkanem FEL ČVUT v Praze byl zvolen prof. Petr Páta V pátek 25. ledna se na Fakultě elektrotechnické ČVUT v Praze konalo 30. řádné zasedání…

Více aktualit

Inženýři z MIT vyrobili nejlehčí a nejtenčí solární článek na světě

02.03.2016 | MIT News | news.mit.edu

Představte si solární článek tak tenký a lehký, že může být umístěn téměř na jakýkoliv povrch, včetně oblečení, chytrého telefonu nebo dokonce listu papíru či heliového balónku.

Výzkumníci z MIT nedávno představili právě takovou technologii - nejtenčí a nejlehčí solární článek, který byl kdy vyroben. I když jeho využití v praxi může trvat několik let, laboratorní testy ukazují nový přístup k výrobě solárních článků, které by mohly pomoci rozvoji příští generace elektronických zařízení.

Nejlehčí solární článek na světě

Klíčem k výrobě nových článků je spojení celého procesu výroby solárního článku, podkladu a ochranné vrstvy do jediného celku. S podkladovou vrstvou se díky výrobnímu procesu probíhajícímu ve vakuu nemusí manipulovat a minimalizuje se tím vystavení materiálu prachu a dalším kontaminujícím látkám, které by mohly způsobit nižší výkonnost článku.

Při prvním pokusu použil tým inženýrů dnes běžně používaný ohebný polymer zvaný parylen pro podklad i ochrannou vrstvu a organický materiál zvaný DBP jako primární vrstvu absorbující světlo. Parylen je komerčně dostupný plastový nátěr, který se používá k ochraně implantovaných bioelektronických zařízení a tištěných obvodových desek před vlivem prostředí. Celý výrobní proces se odehrává ve vakuové komoře při pokojové teplotě a bez použití rozpouštědel, na rozdíl od výrobních postupů běžných solárních článků, při kterých je vyžadována vysoká teplota a chemikálie. V tomto případě se podklad a solární článek spojí pomocí speciální techniky s použitím páry.

Celý článek na MIT News

Image Credit: MIT

-jk-