Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 5/2017 vyšlo tiskem 11. 5. 2017. V elektronické verzi na webu od 2. 6. 2017. 

Zdůrazněné téma: Ochrana před bleskem a přepětím;
23. ELO SYS 2017

Hlavní článek
Vibrace točivých strojů s magnetickými ložisky

Číslo 2/2017 vyšlo tiskem 17. 3. 2017. V elektronické verzi na webu bude ihned.

Veletrhy a výstavy
Inspirativní osvětlení ze zahraničních veletrhů 

Příslušenství osvětlovacích soustav
Na osvětlení provozu lze šetřit s minimem investic
Maxos fusion – nový rychlomontážní systém Philips
Inteligentní řešení DALISYS® pro řízení osvětlení

Aktuality

Projekt studentů FEL ČVUT v Praze míří na celosvětové finále Microsoft Imagine Studentský startup XGLU, zabývající se vývojem bezbateriového glukometru, vybojoval…

ČEZ zřizuje novou divizi jaderná energetika. Povede ji Bohdan Zronek Vedení Skupiny ČEZ rozhodlo o vzniku nové divize jaderná energetika s platností od 1.…

Příští týden začne v Praze strojírenský veletrh FOR INDUSTRY Letos na něm předvedou jedinečné novinky české společnosti. Spojení designu a moderní…

Vadné adaptéry Tesla poškozují rychlodobíjecí stanice V uplynulých dnech na rychlodobíjecích stanicích ČEZ zaznamenal už několikátý případ…

Více aktualit

Inženýři z MIT vyrobili nejlehčí a nejtenčí solární článek na světě

02.03.2016 | MIT News | news.mit.edu

Představte si solární článek tak tenký a lehký, že může být umístěn téměř na jakýkoliv povrch, včetně oblečení, chytrého telefonu nebo dokonce listu papíru či heliového balónku.

Výzkumníci z MIT nedávno představili právě takovou technologii - nejtenčí a nejlehčí solární článek, který byl kdy vyroben. I když jeho využití v praxi může trvat několik let, laboratorní testy ukazují nový přístup k výrobě solárních článků, které by mohly pomoci rozvoji příští generace elektronických zařízení.

Nejlehčí solární článek na světě

Klíčem k výrobě nových článků je spojení celého procesu výroby solárního článku, podkladu a ochranné vrstvy do jediného celku. S podkladovou vrstvou se díky výrobnímu procesu probíhajícímu ve vakuu nemusí manipulovat a minimalizuje se tím vystavení materiálu prachu a dalším kontaminujícím látkám, které by mohly způsobit nižší výkonnost článku.

Při prvním pokusu použil tým inženýrů dnes běžně používaný ohebný polymer zvaný parylen pro podklad i ochrannou vrstvu a organický materiál zvaný DBP jako primární vrstvu absorbující světlo. Parylen je komerčně dostupný plastový nátěr, který se používá k ochraně implantovaných bioelektronických zařízení a tištěných obvodových desek před vlivem prostředí. Celý výrobní proces se odehrává ve vakuové komoře při pokojové teplotě a bez použití rozpouštědel, na rozdíl od výrobních postupů běžných solárních článků, při kterých je vyžadována vysoká teplota a chemikálie. V tomto případě se podklad a solární článek spojí pomocí speciální techniky s použitím páry.

Celý článek na MIT News

Image Credit: MIT

-jk-