Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 12/2018 vyšlo tiskem 5. 12. 2018. V elektronické verzi na webu 5. 1. 2019. 

Téma: Měření a měřicí přístroje; Zkušebnictví a diagnostika

Hlavní článek
Termovízne merania v energetike
Smart Cities (5. část)

Číslo 6/2018 vyšlo tiskem 3. 12. 2018. V elektronické verzi na webu 4. 1. 2019.

Svítidla a světelné přístroje
Modulární světlomety Siteco
Dekorativní svítidlo PRESBETON H-E-X z ucelené řady městského mobiliáře
LED svítidla ESALITE – revoluce v oblasti průmyslového osvětlení

Denní světlo
O mediánové osvětlenosti denním světlem
Odborný seminář Denní světlo v praxi

Aktuality

ŠKODA AUTO DigiLab začíná v Praze testovat mobilní nabíjecí stanice pro elektromobily ŠKODA AUTO DigiLab spustila v Praze pilotní fázi nového projektu mobilních nabíjecích…

Nejlepší projekt energetických úspor na Slovensku je z dílny ENESA z ČEZ ESCO V Bratislavě se předávaly ceny za nejlepší slovenské energeticky úsporné projekty. Letos…

Veletrh DŘEVOSTAVBY 2019 se bude konat souběžně s veletrhem MODERNÍ VYTÁPĚNÍ 2019 14. Veletrh DŘEVOSTAVBY 2019 nabídne vše, co lze ze dřeva vyrobit, moderní technologie,…

Podniky v Moravskoslezském kraji řeší transformaci průmyslu Transformaci průmyslu od těžkého, hutního, k moderním digitalizovaným a automatizovaným…

Více aktualit

Inženýři z MIT vyrobili nejlehčí a nejtenčí solární článek na světě

02.03.2016 | MIT News | news.mit.edu

Představte si solární článek tak tenký a lehký, že může být umístěn téměř na jakýkoliv povrch, včetně oblečení, chytrého telefonu nebo dokonce listu papíru či heliového balónku.

Výzkumníci z MIT nedávno představili právě takovou technologii - nejtenčí a nejlehčí solární článek, který byl kdy vyroben. I když jeho využití v praxi může trvat několik let, laboratorní testy ukazují nový přístup k výrobě solárních článků, které by mohly pomoci rozvoji příští generace elektronických zařízení.

Nejlehčí solární článek na světě

Klíčem k výrobě nových článků je spojení celého procesu výroby solárního článku, podkladu a ochranné vrstvy do jediného celku. S podkladovou vrstvou se díky výrobnímu procesu probíhajícímu ve vakuu nemusí manipulovat a minimalizuje se tím vystavení materiálu prachu a dalším kontaminujícím látkám, které by mohly způsobit nižší výkonnost článku.

Při prvním pokusu použil tým inženýrů dnes běžně používaný ohebný polymer zvaný parylen pro podklad i ochrannou vrstvu a organický materiál zvaný DBP jako primární vrstvu absorbující světlo. Parylen je komerčně dostupný plastový nátěr, který se používá k ochraně implantovaných bioelektronických zařízení a tištěných obvodových desek před vlivem prostředí. Celý výrobní proces se odehrává ve vakuové komoře při pokojové teplotě a bez použití rozpouštědel, na rozdíl od výrobních postupů běžných solárních článků, při kterých je vyžadována vysoká teplota a chemikálie. V tomto případě se podklad a solární článek spojí pomocí speciální techniky s použitím páry.

Celý článek na MIT News

Image Credit: MIT

-jk-