Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 10/2017 vyšlo tiskem 4. 10. 2017. V elektronické verzi na webu od 4. 10. 2017. 

Téma: Elektroenergetika; OZE; Palivové články; Baterie a akumulátory

Hlavní článek
Skladování elektrické energie
Elektrochemická impedanční spektroskopie akumulátorů

Číslo 5/2017 vyšlo tiskem 18. 9. 2017. V elektronické verzi na webu bude 18. 9. 2017.

Svítidla a světelné přístroje
MAYBE STYLE představuje LED designová svítidla německého výrobce Lightnet
TREVOS – nová svítidla pro průmysl i kanceláře
Kolik typů LED panelů vyrábí MODUS?
Inteligentní LED svítidlo RENO PROFI

Osvětlení interiérů
Světlo v bytovém interiéru – otázky a odpovědi

Aktuality

Soutěž o nejlepší realizovaný projekt KNX instalace Spolek KNX národní skupina České republiky, z. s. vyhlásil soutěž o nejlepší projekt…

Slovensko bude partnerskou zemí MSV 2018 Příští rok se chystají oslavy několika kulatých výročí včetně 100 let od založení…

ABB na MSV 2017 v Brně vystavuje stavební kameny továrny budoucnosti Společnost ABB na Mezinárodním strojírenském veletrhu 2017 v hale G2/30 představuje…

Výroční SIGNAL festival provede diváky po nových trasách i svou historií Festival světla SIGNAL divákům předvede 20 instalací od umělců z České republiky i…

Více aktualit

Inženýři z MIT vyrobili nejlehčí a nejtenčí solární článek na světě

02.03.2016 | MIT News | news.mit.edu

Představte si solární článek tak tenký a lehký, že může být umístěn téměř na jakýkoliv povrch, včetně oblečení, chytrého telefonu nebo dokonce listu papíru či heliového balónku.

Výzkumníci z MIT nedávno představili právě takovou technologii - nejtenčí a nejlehčí solární článek, který byl kdy vyroben. I když jeho využití v praxi může trvat několik let, laboratorní testy ukazují nový přístup k výrobě solárních článků, které by mohly pomoci rozvoji příští generace elektronických zařízení.

Nejlehčí solární článek na světě

Klíčem k výrobě nových článků je spojení celého procesu výroby solárního článku, podkladu a ochranné vrstvy do jediného celku. S podkladovou vrstvou se díky výrobnímu procesu probíhajícímu ve vakuu nemusí manipulovat a minimalizuje se tím vystavení materiálu prachu a dalším kontaminujícím látkám, které by mohly způsobit nižší výkonnost článku.

Při prvním pokusu použil tým inženýrů dnes běžně používaný ohebný polymer zvaný parylen pro podklad i ochrannou vrstvu a organický materiál zvaný DBP jako primární vrstvu absorbující světlo. Parylen je komerčně dostupný plastový nátěr, který se používá k ochraně implantovaných bioelektronických zařízení a tištěných obvodových desek před vlivem prostředí. Celý výrobní proces se odehrává ve vakuové komoře při pokojové teplotě a bez použití rozpouštědel, na rozdíl od výrobních postupů běžných solárních článků, při kterých je vyžadována vysoká teplota a chemikálie. V tomto případě se podklad a solární článek spojí pomocí speciální techniky s použitím páry.

Celý článek na MIT News

Image Credit: MIT

-jk-