Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2018 vyšlo tiskem 27. 6. 2018. V elektronické verzi na webu od 27. 7. 2018. 

Téma: Kabely, vodiče, kabelová technika; Nářadí, nástroje a zařízení pro práci s kabely

Hlavní článek
Parametrizace obvodových modelů lithiových akumulátorů pro elektromobilitu
Smart Cities (3. část – 1. díl)

Číslo 3/2018 vyšlo tiskem 15. 6. 2018. V elektronické verzi na webu 16. 7. 2018.

Příslušenství osvětlovacích soustav
Večer s Foxtrotem na Českém nebi

Veřejné osvětlení
Nadčasové svítidlo pro veřejné osvětlení – Streetlight 11
Ovládání veřejného osvětlení

Aktuality

ČEZ ESCO získala svou historicky největší zakázku v osvětlení ČEZ Energetické služby, dceřiná společnost ČEZ ESCO, dodá osvětlení pro 59 obchodů…

Energetici v Dukovanech spustili čtvrtý blok, elektřinu vyrábí všechny bloky V Jaderné elektrárně Dukovany energetici spustili čtvrtý výrobní blok. Ukončili tak…

Nejlepší studenti 2018 nalezeni Do finálového kola 8. ročníku soutěže Nejlepší student, které se konalo 20. června 2018 v…

Výběrové řízení na dodavatele pro krytí ztrát pokračuje pátým aukčním kolem Páté aukční kolo výběrového řízení na dodavatele elektřiny pro krytí ztrát v přenosové…

Více aktualit

IBM v jednom optickém vlákně zkombinovalo emitor a detektor světla

17.04.2014 | |

Výzkumníci z IBM Research v Curychu a Norwegian University of Science and Technology (NTNU) dokázali poprvé do jednoho nanovlákna umístit jak účinný světelný zdroj, tak schopnost detekce světla. Stačila k tomu jen vhodná aplikace mechanické síly. 

V optické komunikaci se pro emisi světla obvykle používají tzv. III-V polovodiče a pro detekci křemíkové nebo germaniové polovodiče. Nyní se podařilo obě tyto vlastnosti soustředit v jediném čipu, což dává naději, že v blízké budoucnosti bude možné výrazně snížit složitost nanofotonických komponent.
Vědci, kteří publikovali své výsledky v časopise Nature Communications (článek Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress) zjistili, že arsenid galia může být „laděn“ a podle naladění fungovat jednou jako světlo emitující dioda, podruhé jako fotodetektor, a to díky hexagonální krystalické struktuře obdobé krystalické struktuře minerálu zvaného wurtzit. V těchto polovodičích se atomy nacházejí ve velmi specifických polohách. Pokud vyvíjíme tlak tak se toto rozložení mění a my tím můžeme přepínat mezi jednotlivými stavy.

"Když budete nanovlákno po celé jeho délce natahovat, bude ve stavu, kdy může velmi efektivně emitovat světlo. Když místo toho vlákno stlačíme, jeho elektronické vlastnosti se změní a materiál světlo emitovat přestane" V materiálu se pak chová podobně jako křemík nebo germanium a stane se dobrým detektorem."

Optické komunikace nejsou jedinou oblastí potenciálního využití tohoto objevu. "Také nám to umožňuje daleko lépe porozumět fyzice polovodičů, díky čemuž budeme moci navrhovat nanovlákna s vestavěným tlakovým napětím, například pro vyšší účinnost solárních článků, " řekl Helge Weman, profesor na NTNU." To může být například využito k vytvoření různých snímačů tlaku, nebo výrobě elektrické energie, pouhým ohýbáním nanovláken."

Původní článek IEEE Spectrum