Aktuální vydání

Číslo 7/2020 vyšlo tiskem 24. 6. 2020. V elektronické verzi na webu 24. 7. 2020. 

Téma: Kabely, vodiče a kabelová technika

Hlavní článek
Nové technologie trakčního napájení 25 kV/50 Hz (2. část)

Číslo 3/2020 vyšlo tiskem 8. 6. 2020. V elektronické verzi na webu 8. 7. 2020.

Činnost odborných organizací
Oznam: LUMEN V4 2020 je zrušený
Co je nového v CIE, duben 2020

Příslušenství osvětlovacích soustav
Foxtrot jako „Master Control“ v Hotelu Breukelen
Regulátory osvětlení – řízení osvětlení na konstantní úroveň

IBM v jednom optickém vlákně zkombinovalo emitor a detektor světla

17. 4. 2014 | |

Výzkumníci z IBM Research v Curychu a Norwegian University of Science and Technology (NTNU) dokázali poprvé do jednoho nanovlákna umístit jak účinný světelný zdroj, tak schopnost detekce světla. Stačila k tomu jen vhodná aplikace mechanické síly. 

V optické komunikaci se pro emisi světla obvykle používají tzv. III-V polovodiče a pro detekci křemíkové nebo germaniové polovodiče. Nyní se podařilo obě tyto vlastnosti soustředit v jediném čipu, což dává naději, že v blízké budoucnosti bude možné výrazně snížit složitost nanofotonických komponent.
Vědci, kteří publikovali své výsledky v časopise Nature Communications (článek Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress) zjistili, že arsenid galia může být „laděn“ a podle naladění fungovat jednou jako světlo emitující dioda, podruhé jako fotodetektor, a to díky hexagonální krystalické struktuře obdobé krystalické struktuře minerálu zvaného wurtzit. V těchto polovodičích se atomy nacházejí ve velmi specifických polohách. Pokud vyvíjíme tlak tak se toto rozložení mění a my tím můžeme přepínat mezi jednotlivými stavy.

"Když budete nanovlákno po celé jeho délce natahovat, bude ve stavu, kdy může velmi efektivně emitovat světlo. Když místo toho vlákno stlačíme, jeho elektronické vlastnosti se změní a materiál světlo emitovat přestane" V materiálu se pak chová podobně jako křemík nebo germanium a stane se dobrým detektorem."

Optické komunikace nejsou jedinou oblastí potenciálního využití tohoto objevu. "Také nám to umožňuje daleko lépe porozumět fyzice polovodičů, díky čemuž budeme moci navrhovat nanovlákna s vestavěným tlakovým napětím, například pro vyšší účinnost solárních článků, " řekl Helge Weman, profesor na NTNU." To může být například využito k vytvoření různých snímačů tlaku, nebo výrobě elektrické energie, pouhým ohýbáním nanovláken."

Původní článek IEEE Spectrum