Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 5/2019 vyšlo tiskem 15. 5. 2019. V elektronické verzi na webu ihned. 

Téma: Ochrana před bleskem a přepětím; Požární a bezpečnostní technika

Hlavní článek
Overenie materiálového koeficientu v norme STN EN 62305-3
Smart Cities (10. část – dokončení)

Číslo 2/2019 vyšlo tiskem 15. 3. 2019. V elektronické verzi na webu ihned.

Architekturní a scénické osvětlení
Architekturní osvětlení hradu Bečov nad Teplou
Světelný design v kostce (41)
Analýza světelného obrazu trochu více teoreticky

Denní světlo
Největší chyby v návrhu denního osvětlení budov

Aktuality

FEL_Camp pro středoškoláky Jak přežít v přírodě a opatřit si základní životní potřeby, jako je připojení k internetu…

Osram přebírá společnost Ring Automotive Po schválení převzetí společnosti Ring Automotive společností Osram britským Úřadem pro…

Hľadáš svoje uplatnenie? Pripoj sa k nám! Sme SEMIKRON. SEMIKRON je rodinná nemecká spoločnosť s dlhoročnou tradíciou a skúsenosťami. Sme jedným…

Elektrotechnická asociace zdůraznila své postavení v SPČR V květnových volbách do orgánů Svazu průmyslu a dopravy České republiky (SPČR) uspěli…

Více aktualit

IBM v jednom optickém vlákně zkombinovalo emitor a detektor světla

17.04.2014 | |

Výzkumníci z IBM Research v Curychu a Norwegian University of Science and Technology (NTNU) dokázali poprvé do jednoho nanovlákna umístit jak účinný světelný zdroj, tak schopnost detekce světla. Stačila k tomu jen vhodná aplikace mechanické síly. 

V optické komunikaci se pro emisi světla obvykle používají tzv. III-V polovodiče a pro detekci křemíkové nebo germaniové polovodiče. Nyní se podařilo obě tyto vlastnosti soustředit v jediném čipu, což dává naději, že v blízké budoucnosti bude možné výrazně snížit složitost nanofotonických komponent.
Vědci, kteří publikovali své výsledky v časopise Nature Communications (článek Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress) zjistili, že arsenid galia může být „laděn“ a podle naladění fungovat jednou jako světlo emitující dioda, podruhé jako fotodetektor, a to díky hexagonální krystalické struktuře obdobé krystalické struktuře minerálu zvaného wurtzit. V těchto polovodičích se atomy nacházejí ve velmi specifických polohách. Pokud vyvíjíme tlak tak se toto rozložení mění a my tím můžeme přepínat mezi jednotlivými stavy.

"Když budete nanovlákno po celé jeho délce natahovat, bude ve stavu, kdy může velmi efektivně emitovat světlo. Když místo toho vlákno stlačíme, jeho elektronické vlastnosti se změní a materiál světlo emitovat přestane" V materiálu se pak chová podobně jako křemík nebo germanium a stane se dobrým detektorem."

Optické komunikace nejsou jedinou oblastí potenciálního využití tohoto objevu. "Také nám to umožňuje daleko lépe porozumět fyzice polovodičů, díky čemuž budeme moci navrhovat nanovlákna s vestavěným tlakovým napětím, například pro vyšší účinnost solárních článků, " řekl Helge Weman, profesor na NTNU." To může být například využito k vytvoření různých snímačů tlaku, nebo výrobě elektrické energie, pouhým ohýbáním nanovláken."

Původní článek IEEE Spectrum