Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2019 vyšlo tiskem 26. 6. 2019. V elektronické verzi na webu 26. 7. 2019. 

Téma: Kabely, vodiče a kabelová technika; Nářadí, nástroje a zařízení pro práci s kabely

Hlavní článek
Správa aktiv a potřeba diagnostiky v Průmyslu 4.0

Číslo 4/2019 vyšlo tiskem 29. 7. 2019. V elektronické verzi na webu 29. 8. 2019.

Světelně-technická zařízení
Foxtrot řídí nové sídlo asociace barmanů
Dynamické osvětlení kaple Anděla Strážce v Sušici

Příslušenství osvětlovacích soustav
Bezpečnost, úspornost a komfort s KNX
Celosvětově první LED spínaný zdroj s rozhraním KNX od výrobce MEAN WELL
KNX – systém s budoucností
Schmachtl – konektorová instalace gesis

Aktuality

Společnost ABB jmenovala generálním ředitelem Björna Rosengrena Představenstvo společnosti ABB jednohlasně jmenovalo Björna Rosengrena generálním…

Studentské formule ČVUT v Praze přivezly z Mostu zlatou a stříbrnou medaili Ve dnech 13. až 17. srpna se na polygonu u Autodromu Most konal mezinárodní závod…

Nový pobočný spolek ČSO – region Praha Po mnoha letech existence České společnosti pro osvětlování byl v červnu tohoto roku…

Digitální továrna 2.0 na MSV 2019 Digitální továrna 2.0 je jedním z hlavních témat Mezinárodního strojírenského veletrhu…

Více aktualit

Běžné materiály zvýší kapacitu baterií pro elektromobily

30.10.2013 | |

Elektromobil poháněný baterií je jistě šetrnější k životnímu prostředí, jenže automobil s natankovanou nádrží dojede dál. Zlepšení kapacity lithium-iontových baterií za pomoci nového typu elektrody vyrobeného z nanočástic oxidu železa může elektromobilům pomoci zvýšit jejich dojezd. Zhaolin Liu z A*STAR Institute of Materials Research and Engineering v Singapuru a Aishui Yu z Fudan University v Číně spolu se svými spolupracovníky vyvinuli nový materiál pro konstrukci elektrod - není drahý, je vhodný pro masovou výrobu a pojme větší hustotu náboje než kten v klasických lithium-iontových bateriích.

Lithium-iontové baterie skladují a uvolňují energii tím, že přesouvají ionty lithia mezi dvěma elektrodami spojenými do obvodu. Během nabíjení se ionty lithia uvolňují z katody vyrobené z lithia a oxidu kobaltu. Ionty putují kapalným elektrolytem do anody, která je většinou vyrobena z jemně porézního grafitu. Když se baterie vybije, je třeba do ní vpustit elektrický proud - proces se rozeběhne opačně a napětí mezi elektrodami je obnoveno. Oxidy železa mají mnohem vyšší nabíjecí kapacitu než grafit, ale proces je pomalý. 

Také Liu, Yu a jejich týmy si všimli, že anoda vytvořená z nanočástic oxidu železa se dobíjí rychleji, protože její póry poskytují iontům lithia lepší cestu. Tyto póry navíc umožňují nedestruktivní změnu struktury materiálu během procesu ukládání iontů. Vědci tak vytvořili 5 nanometrů velké částice oxidu železa (Fe2O3) jednoduše tím, že ve vodě ohřáli dusičnan železa, částice smíchali se sazemi tzv. lampové černi (carbon black) spojili je polyvinyl fluorem a směs potáhli měděnou folií, aby vytvořili anody. Během prvního cyklu anody vykázaly účinnost 75 – 78% v závislosti na hustotě použitého proudu. Po několika cyklech však účinnost vzorstla až na 98 %, což je skoro tolik, jako mají komerční lithium-iontové baterie. Následná analýzha to vysvětlila tím, že na počátku jsou nanočástice rozpojené a musejí teprve pospojováním dosáhnout své optimální velikosti. Po 230 cyklech zůstávala účinnost anody 97 % s kapacitou 1009 miliamperhodin na gram, což je skoro třikrát více, než u komerčních grafitových anod. Vědci nyní pracují na optimalizaci syntézy nanočástic a zvýšení účinnosti počátečních nabíjecích cyklů.

Celý článek naleznete ZDE