Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 10/2019 vyšlo tiskem 2. 10. 2019. V elektronické verzi na webu ihned. 

Téma: Elektroenergetika; Zařízení pro přenos a distribuci elektřiny

Hlavní článek
Problematika a měření na invertorových svařovacích zdrojích z hlediska odebíraného proudu

Číslo 5/2019 vyšlo tiskem 16. 9. 2019. V elektronické verzi na webu ihned.

Činnost odborných organizací
Mezinárodní konference SVĚTLO 2019 – 6. oznámení
Zúčastnili sme sa kongresu Medzinárodnej komisie pre osvetlenie CIE 2019 vo Washingtone
Odborný seminár SLOVALUX 2019

Veletrhy a výstavy
Inspirujte se boho stylem i designem Dálného východu na podzimním veletrhu FOR INTERIOR

Aktuality

ENERGO SUMMIT – vrcholná událost energetického sektoru 15. listopadu 2019 se na pražském výstavišti PVA EXPO PRAHA uskuteční již 5. ročník…

Druhý ročník e-SALON bude větší a plný premiér čisté mobility Na úspěšnou premiéru e-SALON v roce 2018 naváže na výstavišti PVA v Praze Letňanech jeho…

FOR ARCH oslavil třicetiny! Největší stavební veletrh v ČR nemá konkurenci Stovky vystavovatelů napříč obory, tisíce spokojených návštěvníků, desítky novinek a…

Společnost Eaton opět partnerem projektu Machři roku Společnost Eaton Elektrotechnika, která je součástí globálního leadera v oblasti řízení…

Více aktualit

Běžné materiály zvýší kapacitu baterií pro elektromobily

30.10.2013 | |

Elektromobil poháněný baterií je jistě šetrnější k životnímu prostředí, jenže automobil s natankovanou nádrží dojede dál. Zlepšení kapacity lithium-iontových baterií za pomoci nového typu elektrody vyrobeného z nanočástic oxidu železa může elektromobilům pomoci zvýšit jejich dojezd. Zhaolin Liu z A*STAR Institute of Materials Research and Engineering v Singapuru a Aishui Yu z Fudan University v Číně spolu se svými spolupracovníky vyvinuli nový materiál pro konstrukci elektrod - není drahý, je vhodný pro masovou výrobu a pojme větší hustotu náboje než kten v klasických lithium-iontových bateriích.

Lithium-iontové baterie skladují a uvolňují energii tím, že přesouvají ionty lithia mezi dvěma elektrodami spojenými do obvodu. Během nabíjení se ionty lithia uvolňují z katody vyrobené z lithia a oxidu kobaltu. Ionty putují kapalným elektrolytem do anody, která je většinou vyrobena z jemně porézního grafitu. Když se baterie vybije, je třeba do ní vpustit elektrický proud - proces se rozeběhne opačně a napětí mezi elektrodami je obnoveno. Oxidy železa mají mnohem vyšší nabíjecí kapacitu než grafit, ale proces je pomalý. 

Také Liu, Yu a jejich týmy si všimli, že anoda vytvořená z nanočástic oxidu železa se dobíjí rychleji, protože její póry poskytují iontům lithia lepší cestu. Tyto póry navíc umožňují nedestruktivní změnu struktury materiálu během procesu ukládání iontů. Vědci tak vytvořili 5 nanometrů velké částice oxidu železa (Fe2O3) jednoduše tím, že ve vodě ohřáli dusičnan železa, částice smíchali se sazemi tzv. lampové černi (carbon black) spojili je polyvinyl fluorem a směs potáhli měděnou folií, aby vytvořili anody. Během prvního cyklu anody vykázaly účinnost 75 – 78% v závislosti na hustotě použitého proudu. Po několika cyklech však účinnost vzorstla až na 98 %, což je skoro tolik, jako mají komerční lithium-iontové baterie. Následná analýzha to vysvětlila tím, že na počátku jsou nanočástice rozpojené a musejí teprve pospojováním dosáhnout své optimální velikosti. Po 230 cyklech zůstávala účinnost anody 97 % s kapacitou 1009 miliamperhodin na gram, což je skoro třikrát více, než u komerčních grafitových anod. Vědci nyní pracují na optimalizaci syntézy nanočástic a zvýšení účinnosti počátečních nabíjecích cyklů.

Celý článek naleznete ZDE