Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 2/2017 vyšlo
tiskem 17. 2. 2017. V elektronické verzi na webu od 10. 3. 2017. 

Téma: Elektrické přístroje – spínací, jisticí, ochranné a signalizační; Přístroje pro inteligentní sítě

Hlavní článek
Atypický návrh výkonového stejnosměrného zdroje se středofrekvenčním transformátorovým filtrem rušivého napětí

Aktuality

V distribuční soustavě (DS) ČEZ Distribuce, a. s. je vyhlášen kalamitní stav Od 9 h dne 24.2.2017 je vyhlášen kalamitní stav v Karlovarském kraji - okres Karlovy Vary…

Veletrh Věda Výzkum Inovace 2017 zahájí místopředseda vlády Pavel Bělobrádek Letošní ročník Veletrhu Věda Výzkum Inovace zahájí na brněnském výstavišti 28. února 2017…

Chytré lampy PRE potvrdily zhoršenou smogovou situaci v Praze Chytré lampy PRE potvrdily v rámci svého pilotního provozu, že v Holešovicích a…

Jak se bydlí v pasivních domech, řeknou jejich majitelé na veletrhu FOR PASIV Další ročník veletrhu FOR PASIV, který je zaměřený na projektování a výstavbu…

Fakulta elektrotechnická ČVUT v Praze představí zájemcům o studium moderní techniku i její historii Fakulta elektrotechnická ČVUT v Praze pořádá v pátek 20. ledna od 8.30 hodin první…

Loňská výroba Temelína by stačila k pokrytí téměř roční spotřeby českých domácností Přesně 12,1 terawatthodin elektřiny (TWh) loni vyrobila Jaderná elektrárna Temelín. Je to…

Více aktualit

Vývoj názorů na podstatu elektřiny (34)

číslo 8-9/2003

archiv

Vývoj názorů na podstatu elektřiny (34)

Ing. Josef Heřman, CSc.

Ačkoliv krátce po Oerstedově objevu André Maria Ampre a Francois Dominique Arago (1786–1853) zjistili, že elektrický proud tekoucí závity solenoidu indukuje v železné tyči do něho vložené magnetismus, nelze to dost dobře z nynějšího pohledu pokládat za vynález elektromagnetu (obr.1). Obr. 1. Oba dva badatelé pravděpodobně – opět nazíráno dnešníma očima – ani nesledovali vytvoření elektrotechnického zařízení, které by měnilo elektromagnetickou energii na energii mechanickou projevující se silovými účinky. Rovněž Humphry Davy se těmito jevy zabýval, a je tudíž někdy uváděn jako jeden z vynálezců elektromagnetu. Z pohledu konečného efektu lze toto prvenství nejspíše přisoudit badateli-amatéru a všestrannému technikovi Angličanu Williamu Sturgeonovi (1783–1850) z Woolwiche. V době, kdy se začal zajímat o výsledky Amprových a Aragových pokusů, nebyl v oblasti experimentování s elektřinou žádným nováčkem. Měl již za sebou úspěšný způsob řešení depolarizace zinkové elektrody v galvanickém článku, což mu zajistilo i určitou proslulost.

Sturgeon využil výsledky velkých badatelů a roku 1824 navrhl konstrukci skutečného prvního elektromagnetu. Použil k tomu tyč z měkké oceli o délce jedné stopy a o průměru půl palce. Ohnul ji do tvaru koňské podkovy, natřel ji izolačním lakem a šestnáctkrát ji dokola ovinul měděným vodičem. Dbal přitom na to, aby jednotlivé závity byly od sebe pečlivě odděleny. Sturgeon shledal, že proud z jednoho galvanického článku s deskami o ploše 130 čtverečních palců umožnil zhotovenému elektromagnetu unést závaží devíti liber (tj. něco málo přes 4 kg). To byl pozoruhodný účinek, který vzbudil velký zájem ve vědeckých kruzích. Sturgeon předvedl svůj elektromagnet – jak podkovovitého, tak tyčového provedení – na zasedání Royal Society v Londýně v roce 1825.

Jedno z prvních využití elektromagnetu, které se v praxi široce rozšířilo, byl elektromagnetický přerušovač (obr. 2). Nejčastěji je autorství tohoto vynálezu přisuzováno účetnímu ve frankfurtském železářství Johannu Philippu Wagnerovi (1799–1879). Když se ramínko kotvy elektromagnetu prodloužilo, opatřilo kuličkou a celé zařízení doplnilo „cimbálkem„, vznikl elektrický zvonek. Elektromagnet se následně stal jednou z nejdůležitějších komponent elektrotechniky.

Obr. 2.

Telegraf

Elektromagnet našel své přední nezastupitelné místo zejména v elektrické telegrafii. Elektrická telegrafie tak byla prvním technickým oborem, v němž využití elektromagnetického jevu doznalo svého nejširšího uplatnění v praxi. Podrobnější popis vývoje elektrického telegrafu však přesahuje možnosti a cíle tohoto pojednání. Připomeňme stručně alespoň pravděpodobně první zdařilý pokus s elektromagnetickým telegrafem, i když pokusy s využitím elektřiny v telegrafii se uskutečňovaly již dávno před Oerstedovým objevem využití elektrostatického náboje nebo elektrochemických jevů.

Oerstedův objev vlivu elektrického proudu na magnetickou jehlu (tehdejší převažující označení pro magnetku) a již dříve citovaný Schweiggerův vynález multiplikátoru se staly inspirací a základem řešení tzv. jehlových telegrafů. Jejich princip byl založen na výchylce magnetky vlivem průchodu elektrického proudu cívkou jedním či druhým směrem (obr. 3).

Obr. 3.

Jak je v technice časté, první návrhy byly značně komplikované. Nemalou roli zde hrála i zkušenost s předcházejícími principy přenosu informace – elektrostatických a elektrolytických telegrafů. Již v roce 1820, tedy záhy po Oerstedově objevu, navrhl Ampre, aby byl tento princip využit v telegrafii. Navrhoval použít k tomu účelu 24 galvanometrů s magnetkami označenými písmeny či číslicí. Obdobné řešení navrhoval i proslulý matematik a fyzik Pierre Simon de Laplace (1749–1827).

Všechna taková zařízení však byla příliš nákladná, nedokonalá, a tedy v praxi téměř nerealizovatelná. Schůdnou cestu, v podstatě realizující Amprův návrh technicky proveditelným způsobem, nalezl důstojník ruského generálního štábu a státní rada baron Pavel Lvovič Šilling (1786–1837).

Šillingova znalost pokusů s elektrolytickým telegrafem i jeho zkušenosti z diplomatické a vojenské oblasti, doplněné dlouhodobým hlubokým zájmem o elektřinu, mu umožnily správně ohodnotit šanci Schweiggerova multiplikátoru pro účely telegrafie. Pravděpodobně již roku 1825 sestrojil svůj první telegraf, využívající tyto dva základní prvky – magnetku a multiplikátor. Ale až v roce 1832, po mnohaleté práci, zkonstruoval první, technicky již značně dokonalý, elektromagnetický telegraf na světě.

(pokračování)