Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 11/2016 vyšlo tiskem
7. 11. 2016. V elektronické verzi na webu od 1. 12. 2016. 

Téma: Rozváděče a rozváděčová technika; Točivé stroje a výkonová elektronika

Hlavní článek
Lithiové trakční akumulátory pro elektromobilitu

Aktuality

Svítící fasáda FEL ČVUT nabídne veřejnosti interaktivní program s názvem Creative Colours of FEL Dne 13. prosince v 16.30 hodin se v pražských Dejvicích veřejnosti představí interaktivní…

Fakulta elektrotechnická je na špici excelentního výzkumu na ČVUT Expertní panely Rady vlády pro výzkum, vývoj, inovace (RVVI) vybraly ve II. pilíři…

Švýcaři v referendu odmítli uzavřít jaderné elektrárny dříve V referendu hlasovalo 45 procent obyvatel, z toho 54,2 procent voličů řeklo návrhu na…

Fakulta elektrotechnická ČVUT v Praze pořádá 25. 11. 2016 den otevřených dveří Fakulta elektrotechnická ČVUT v Praze pořádá 25. listopadu od 8.30 hodin Den otevřených…

Calliope mini – multifunkční deska Calliope mini poskytuje kreativní možnosti pro každého. A nezáleží na tom, zda jde o…

Ocenění v soutěži České hlavičky získal za elektromagnetický urychlovač student FEL ČVUT Student programu Elektronika a komunikace Fakulty elektrotechnické ČVUT v Praze Vojtěch…

Více aktualit

Ultrazvukové čidlo v prostředí s nebezpečím výbuchu

číslo 8-9/2003

Mezinárodní strojírenský veletrh

Ultrazvukové čidlo v prostředí s nebezpečím výbuchu

Ultrazvuková čidla jsou často používána v aplikacích pro měření hladin. Typickým příkladem je měření v čističkách odpadních vod, kde je jimi možné měřit výšku hladiny.

Obr. 1.

Ultrazvukové čidlo má v těchto aplikacích mnoho výhod. Jde o bezdotykové měření, kdy čidlo není citlivé na znečištění hladiny a plovoucí předměty, které často blokují mechanismy plovákových měřidel. Protože měřicí sonda čidla nepřichází do styku s měřenou kapalinou, nevzniká nebezpečí usazování nečistot, které často způsobuje falešné údaje poskytované ponornými kapacitními čidly.

Moderní ultrazvuková čidla jsou již všechna teplotně kompenzována vestavěným teploměrem, a nejsou tedy citlivá na změny teploty okolního prostředí. Jediným vážným nebezpečím pro přesnost údaje ultrazvukového čidla jsou prudké teplotní gradienty, které mohou vznikat nad hladinou horkých tekutin a deformovat akustické pole.

Nebezpečí výbuchu

Problém však nastává, je-li nutné měřit v prostředí s nebezpečím výbuchu. Tato situace se poměrně často objevuje při měření v jímkách. Ve vodě znečištěné organickými látkami se obvykle vytváří výbušné plyny, které se shromažďují nad hladinou, a vzniká tak nutnost klasifikovat toto prostředí jako prostředí s nebezpečím výbuchu.

Jiným příkladem je měření hladiny hořlavých kapalin, jež vytvářejí výbušné páry odpovídající zóně 1, kam patří většina maziv a některá paliva nebo čistidla.

Obr. 2.

Výbušné prostředí bylo donedávna překážkou pro měření ultrazvukovými čidly, neboť energie, která je nutná k vytvoření dostatečně výkonného ultrazvukového impulsu, je poměrně velká, a jestliže je třeba ji dodat jiskrově bezpečným zdrojem napětí, mohou se objevit různé technické potíže. Proto se v minulosti dodávala ultrazvuková čidla pro měření v prostředí s nebezpečím výbuchu pouze v provedení s pevným závěrem.

Současná nabídka

Nyní je na trhu ultrazvukové čidlo, které je schopno instalace a měření v prostředí s nebezpečím výbuchu. Dodává je společnost Pepperl+Fuchs Mannheim v typové řadě LUC-T10. Například čidlo LUC-T10-G6C-I2B-EX (obr. 1) má certifikát ATEX pro montáž do prostředí EEx ia IIC T6, zóna 1. Nominální měřicí vzdálenost tohoto čidla je 7m, čidlo má analogový proudový výstup 4 až 20 mA, který lze přizpůsobit rozsahu měřených vzdáleností. Pracuje při teplotách v rozsahu od –20 do +60 °C. Lze je také objednat v modifikaci s nastavením pomocí protokolu HART nebo s vestavěným displejem LCD, který může ukazovat přímo výšku hladiny. Uvedené čidlo je vhodné pro individuální připojení k menším řídicím systémům vybaveným analogovými vstupy, k nimž je lze připojit přes standardní jiskrově bezpečnou bariéru, např. KFD2-STC4-Ex1, rovněž z nabídky Pepperl+Fuchs. Tato bariéra umožňuje i přenos protokolu HART.

Pro připojení do rozsáhlých distribuovaných řídicích systémů je určeno čidlo typu LUC-T10-G6M-PAB-EX se stejným měřicím rozsahem, ale s komunikací po sběrnici Profibus PA. Využívá veškerý komfort, který sběrnice Profibus poskytuje, včetně dálkového nastavení a identifikace poruchy. K oddělení jiskrově bezpečné části sběrnice a zároveň ke konverzi Profibusu PA na Profibus DP lze využít segment vazebního členu, tzv. coupleru SK-1 nebo SK-2 (obr. 2).

Jakékoliv další informace o ultrazvukových čidlech si vyžádejte v kterékoliv kanceláři společnosti FCC Průmyslové systémy s. r. o.

FCC Průmyslové systémy s. r. o.
info@fccps.cz
www.fccps.cz

400 11 Ústí nad Labem, SNP 8, tel.: 472 774 173, fax: 472 772 115
603 00 Brno, Vinařská 1a, tel.: 543 215 654, fax: 543 215 655
182 00 Praha 8, U Slovanky 3, tel.: 266 052 098, fax: 286 890 252