Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 10/2017 vyšlo
tiskem 4. 10. 2017. V elektronické verzi na webu od 4. 10. 2017. 

Téma: Elektroenergetika; OZE; Palivové články; Baterie a akumulátory

Hlavní článek
Skladování elektrické energie
Elektrochemická impedanční spektroskopie akumulátorů

Aktuality

Soutěž o nejlepší realizovaný projekt KNX instalace Spolek KNX národní skupina České republiky, z. s. vyhlásil soutěž o nejlepší projekt…

Slovensko bude partnerskou zemí MSV 2018 Příští rok se chystají oslavy několika kulatých výročí včetně 100 let od založení…

ABB na MSV 2017 v Brně vystavuje stavební kameny továrny budoucnosti Společnost ABB na Mezinárodním strojírenském veletrhu 2017 v hale G2/30 představuje…

Výroční SIGNAL festival provede diváky po nových trasách i svou historií Festival světla SIGNAL divákům předvede 20 instalací od umělců z České republiky i…

Nejlepší exponáty veletrhu FOR ARCH získaly ocenění GRAND PRIX Odborná porota i letos vybírala ty nejlepší exponáty a technologie. Ocenění GRAND PRIX…

Indická jazyková verze webové stránky TME Společnost Transfer Multisort Elektronik Sp. z o.o oznámila, že veškeré nezbytné…

Více aktualit

Supravodivost (6)

číslo 5/2006

Supravodivost (6)

Na obr. 17 je řez terénem na úpatí pohoří Jura, kde se nachází tunel pro urychlovač LEP.

Obr. 17.

Obr. 17. Řez terénem na úpatí pohoří Jura

Urychlovač LEP je rozdělen do osmi obloukových sektorů (obr. 18), z nichž každý obsahuje třicet jedna standardních buněk. Tyto buňky jsou vybaveny magnetickým systémem, jenž se skládá z dipólu, kvadrupólu, horizontálních a vertikálních korekčních dipólů, rotujícího kvadrupólu a elektrostatického dipólového deflektoru (vychylovače).

Hlavní parametry kvadrupólu LEP-Alsthom jsou:

  • jmenovitý proud 1 625 A,
  • délka magnetu 2 000 mm,
  • nahromaděná energie 310 kJ,
  • jmenovitý gradient 36 T·m–1,
  • kryogenní ztráty 13 W při 4,2 K.

Obr. 18. Obr. 20.

Obr. 18. Jednotlivé sektory urychlovače LEP
Obr. 19. Elektromagnetická levitace; a – nestabilní, b – stabilizovaná zpětnovazebním regulátorem budicího proudu
Obr. 20. Elektromagnetická levitace se stabilizací polohy obvodem RLC

8. Dopravní systémy

Elektromagnetická a elektrodynamická levitace
EMS (Electromagnetic Suspension, elektromagnetická levitace) je založena na přitahování feromagnetického tělesa elektromagnetem. Tažná síla elektromagnetu je obecně dána vztahem:

F = (B2S)/(2µ0µr)     (N; T, M3, H·m–1)

kde F je síla, B magnetická indukce, S plocha tělesa, µ0 permeabilita vakua, µr relativní permeabilita.

Magnetická indukce B je přímo úměrná proudu I procházejícímu cívkou. Na obr. 19 je stejnosměrný elektromagnet, který přitahuje volně uložené feromagnetické těleso silou F. Tato levitace je nestabilní pro F < hmotnost tělesa (obr. 19 a) a stabilní pro F > hmotnost tělesa (obr. 19 b).

Obr. 19.

Stabilita elektromagnetické levitace je podmíněna zpětnovazební regulací proudu Ib elektromagnetu. Poloha tělesa je podle obr. 19b snímána optickým snímačem polohy s fotočlánkem. Stabilizaci polohy u elektromagnetické levitace lze řešit i samočinnou regulací budicího proudu Ib obvodem RLC, pracujícím v oblasti rezonance (obr. 20). Člen RL je zde tvořen cívkou elektromagnetu. Při oddálení tělesa od elektromagnetu klesne indukčnost L a při přiblížení tělesa indukčnost L naopak vzroste. Proud I, a tedy i magnetická indukce B a tažná síla F se v závislosti na vzdálenosti tělesa d mění a pracovní bod se pohybuje v okolí rezonance. Nevýhodou je, že časová konstanta obvodu RLC je poměrně velká a snadno mohou vzniknout i nežádoucí oscilace. Elektromagnetický systém levitace se používá u rychlovlaků bez supravodivých systémů.

(pokračování)