Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 4/2017 vyšlo
tiskem 12. 4. 2017. V elektronické verzi na webu od 5. 5. 2017. 

Téma: Elektroinstalace; Inteligentní budovy; Stavební veletrhy Brno 2017

Hlavní článek
Návrh aplikace pro monitorování technologických procesů v administrativní budově

Aktuality

Vadné adaptéry Tesla poškozují rychlodobíjecí stanice V uplynulých dnech na rychlodobíjecích stanicích ČEZ zaznamenal už několikátý případ…

Jaký byl Veletrh Dřevostavby a Moderní vytápění 2017? Souběh veletrhů DŘEVOSTAVBY a MODERNÍ VYTÁPĚNÍ je určen všem, kteří řeší stavbu,…

Trendy chytrého řízení budov, energetiky a měst aneb Čtvrtá průmyslová revoluce nejenom v průmyslu Přednáška Ing Jaromíra Klabana se uskuteční ve středu dne 19. 4. 2017 ve 14 hod v…

Češi chtějí bydlet lépe – návštěvnost jarních veletrhů o bydlení stoupla o čtvrtinu Výstaviště PVA EXPO PRAHA v Letňanech bylo v minulých dnech nabité k prasknutí. Téměř…

MSV 2017 zacílí na Průmysl 4.0, automatizaci, environmentální technologie, dopravu a logistiku Již potřetí se na MSV 2017 upře pozornost na nové trendy průmyslové výroby. Průmysl 4.0 s…

Současné možnosti elektromobility představí AMPER Motion 2017 Největší přehlídka elektromobility v ČR proběhne 21.- 24. 3. na brněnském výstavišti a…

Více aktualit

Supravodivost (6)

číslo 5/2006

Supravodivost (6)

Na obr. 17 je řez terénem na úpatí pohoří Jura, kde se nachází tunel pro urychlovač LEP.

Obr. 17.

Obr. 17. Řez terénem na úpatí pohoří Jura

Urychlovač LEP je rozdělen do osmi obloukových sektorů (obr. 18), z nichž každý obsahuje třicet jedna standardních buněk. Tyto buňky jsou vybaveny magnetickým systémem, jenž se skládá z dipólu, kvadrupólu, horizontálních a vertikálních korekčních dipólů, rotujícího kvadrupólu a elektrostatického dipólového deflektoru (vychylovače).

Hlavní parametry kvadrupólu LEP-Alsthom jsou:

  • jmenovitý proud 1 625 A,
  • délka magnetu 2 000 mm,
  • nahromaděná energie 310 kJ,
  • jmenovitý gradient 36 T·m–1,
  • kryogenní ztráty 13 W při 4,2 K.

Obr. 18. Obr. 20.

Obr. 18. Jednotlivé sektory urychlovače LEP
Obr. 19. Elektromagnetická levitace; a – nestabilní, b – stabilizovaná zpětnovazebním regulátorem budicího proudu
Obr. 20. Elektromagnetická levitace se stabilizací polohy obvodem RLC

8. Dopravní systémy

Elektromagnetická a elektrodynamická levitace
EMS (Electromagnetic Suspension, elektromagnetická levitace) je založena na přitahování feromagnetického tělesa elektromagnetem. Tažná síla elektromagnetu je obecně dána vztahem:

F = (B2S)/(2µ0µr)     (N; T, M3, H·m–1)

kde F je síla, B magnetická indukce, S plocha tělesa, µ0 permeabilita vakua, µr relativní permeabilita.

Magnetická indukce B je přímo úměrná proudu I procházejícímu cívkou. Na obr. 19 je stejnosměrný elektromagnet, který přitahuje volně uložené feromagnetické těleso silou F. Tato levitace je nestabilní pro F < hmotnost tělesa (obr. 19 a) a stabilní pro F > hmotnost tělesa (obr. 19 b).

Obr. 19.

Stabilita elektromagnetické levitace je podmíněna zpětnovazební regulací proudu Ib elektromagnetu. Poloha tělesa je podle obr. 19b snímána optickým snímačem polohy s fotočlánkem. Stabilizaci polohy u elektromagnetické levitace lze řešit i samočinnou regulací budicího proudu Ib obvodem RLC, pracujícím v oblasti rezonance (obr. 20). Člen RL je zde tvořen cívkou elektromagnetu. Při oddálení tělesa od elektromagnetu klesne indukčnost L a při přiblížení tělesa indukčnost L naopak vzroste. Proud I, a tedy i magnetická indukce B a tažná síla F se v závislosti na vzdálenosti tělesa d mění a pracovní bod se pohybuje v okolí rezonance. Nevýhodou je, že časová konstanta obvodu RLC je poměrně velká a snadno mohou vzniknout i nežádoucí oscilace. Elektromagnetický systém levitace se používá u rychlovlaků bez supravodivých systémů.

(pokračování)