Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2017 vyšlo
tiskem 28. 6. 2017. V elektronické verzi na webu od 28. 7. 2017. 

Téma: Kabely, vodiče a kabelová technika; Konektory; Software; Značení a štítkování

Hlavní článek
Elektrická izolace a tepelná vodivost

Aktuality

Finálové kolo soutěže EBEC přivede do Brna 120 nejlepších inženýrů z celé Evropy Co vše je možné stihnout navrhnout, smontovat a následně odprezentovat během dvou dní? To…

Co si akce „Světlo v praxi“ klade za cíle V České republice se prvním rokem koná akce v oblasti světelné techniky, která chce…

Startuje hlasování veřejnosti o vítězích 9. ročníku ekologické soutěže E.ON Energy Globe V Praze byly 20. 6. 2017 slavnostně představeny nominované projekty 9. ročníku prestižní…

Nejnovější monopost týmu ČVUT eForce FEE Prague Formula se představil na Václavském náměstí Dne 16. června se v dolní části Václavského náměstí prezentoval tým Fakulty…

IQRF Summit 2017 svědkem reálných IoT aplikací Akce zaměřená na reálná řešení v oblasti chytrých měst, budov, domácností, transportu,…

Konference Internet a Technologie 17 Sdružení CZ.NIC, správce české národní domény, si Vás dovoluje pozvat na již tradiční…

Více aktualit

První elektromotor s „vysokoteplotním“ supravodivým vinutím

číslo 3/2002

Referáty

První elektromotor s „vysokoteplotním“ supravodivým vinutím

Gustav Holub

Obr. 1.

Výzkumníci a inženýři koncernu Siemens vyvinuli a zkoušejí motor se supravodivým vinutím o výkonu 400 kW. Sestavit jej bylo možné díky pokroku ve výzkumu „vysokoteplotních“ supravodičů a permanentních magnetů ze vzácných zemin s vysokým energetickým výkonem. Kromě vedení proudu beze ztrát v supravodivém stavu lze u tohoto stroje dosáhnout proudové hustoty asi desetkrát vyšší než u standardních vodičů Cu. Proto bude v budoucnosti možné konstruovat objemově menší stroje při stejném výkonu, než je tomu v současné době.

Základem řešení jsou keramické vysokoteplotní supravodiče, jejichž elektrický odpor mizí již při teplotě kapalného vzduchu (hluboko pod –273 °C). Proto není zapotřebí drahé kapalné helium – chladicí systém je tedy jednodušší a levnější. Budicí vinutí v rotoru modelového motoru se skládá z vláken keramického supravodiče o tloušťce několika málo mikrometrů. Zmíněná vlákna jsou uložena ve stříbrné matrici. Jelikož supravodič snáší pouze velmi malá střídavá magnetická pole, může být motor provozován výlučně s budicím vinutím napájeným stejnosměrným proudem. Pro generování dostatečně silného budicího pole musí být vodič zchlazen na asi –240 °C. Chladicí kompresorový agregát je menší než běžná pračka. Chladicí výkon je přenášen pomocí neonu, který je dovnitř motoru veden přes druhý konec hřídele. Budicí vinutí na vyniklých pólech není chlazeno přímo neonem, nýbrž nepřímo provozní teplotou mědi (extrémně dobře vedoucí teplo). Tím odpadá velmi nákladné přímé chlazení vodičů kapalným heliem (jako u dříve známého nízkoteplotního supravodivého vinutí).

Obr. 2.

Teplotní izolací je několik vrstev odrazné fólie podobného typu, jaký se v kosmonautice nebo horolezectví používá jako záchranná přikrývka. Kromě toho je prostor kolem budicího vinutí vyplněn vakuem. Jelikož budicí vinutí nemůže být volně uloženo ve statoru (ve vzduchoprázdném prostoru), byly pro přenos točivého momentu a pro upevnění statorového vinutí použity málo tepelně vodivé, ale robustní konstrukční prvky z moderních materiálů využívaných v letecké technice.

Vodič použitý v experimentálním motoru má ve srovnání s běžným drátem Cu (hustota 4 až 8 A/mm2) podstatně vyšší proudovou hustotu 75 A/mm2. Vyvíjeny jsou supravodiče, které v budoucnosti umožní přenášet proud hustoty až 1 000 A/mm2. Tak bude možné dosáhnout magnetické indukce ve vzduchové mezeře 2 T a více. Aby se zamezilo přesycení zubů, byla zvolena konstrukce statoru s vinutím bez zubů. Vinutí, které tvoří splétané vodiče (pro zabránění vysokým ztrátám v magnetickém poli), tedy leží ve vzduchové mezeře. Přestože motor nebyl dimenzován z hlediska optimální účinnosti, měření ukazují, že se účinnost pohybuje nad srovnatelnými hodnotami běžného asynchronního stroje, popř. i synchronního stroje s permanentními magnety. Vzhledem k možnosti generovat magnetická pole vysoké intenzity ve vzduchové mezeře téměř beze ztrát, může být výkon motorů se supravodivým vinutím údajně dvojnásobný oproti výkonu klasických motorů, a to při stejném objemu a hmotnosti. Celkové ztráty mohou být sníženy na polovinu i při započtení ztrát v agregátu pro chlazení rotorového vinutí. Odborníci očekávají první aplikace supravodivých motorů především v prostorově omezených místech s požadavky na malou hmotnost, např. na lodích, mimobřežních těžebních plošinách nebo jako generátory pro pohon vysokootáčkových plynových turbín atd.

[NEROWSKI, G. – NICK, A. W.: Motor„On the Rocks“. Drive-Switch and Control, 2001, č. 3., s. 10-11.]