Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 3/2017 vyšlo
tiskem 15. 3. 2017. V elektronické verzi na webu bude ihned. 

Téma: Amper 2017 – 25. mezinárodní elektrotechnický veletrh

Hlavní článek
Problémy elektromobility

Aktuality

Současné možnosti elektromobility představí AMPER Motion 2017 Největší přehlídka elektromobility v ČR proběhne 21.- 24. 3. na brněnském výstavišti a…

Startuje 9. ročník největší tuzemské ekologické soutěže Odstartoval již 9. ročník největší tuzemské ekologické soutěže E.ON Energy Globe.…

V distribuční soustavě (DS) ČEZ Distribuce, a. s. je vyhlášen kalamitní stav Od 9 h dne 24.2.2017 je vyhlášen kalamitní stav v Karlovarském kraji - okres Karlovy Vary…

Veletrh Věda Výzkum Inovace 2017 zahájí místopředseda vlády Pavel Bělobrádek Letošní ročník Veletrhu Věda Výzkum Inovace zahájí na brněnském výstavišti 28. února 2017…

Chytré lampy PRE potvrdily zhoršenou smogovou situaci v Praze Chytré lampy PRE potvrdily v rámci svého pilotního provozu, že v Holešovicích a…

Jak se bydlí v pasivních domech, řeknou jejich majitelé na veletrhu FOR PASIV Další ročník veletrhu FOR PASIV, který je zaměřený na projektování a výstavbu…

Více aktualit

Perspektivy využití malých vodních elektráren k provozu elektrických vozidel a tepelných čerpadel

číslo 10/2003

inovace, technologie, projekty

Perspektivy využití malých vodních elektráren k provozu elektrických vozidel a tepelných čerpadel

doc. Ing. Miroslav Cenek, CSc., prof. Ing. Jiří Kazelle, CSc., Ing. Zdenka Rozsívalová,
Ústav elektrotechnologie, Fakulta elektrotechniky a komunikačních technologií,
Vysoké učení technické v Brně

Současný stav

V současné době se k nabíjení elektrických vozidel a k provozu tepelných čerpadel používá elektrická energie z rozvodné elektrické sítě, do které přispívají i výrobci elektrické energie z obnovitelných zdrojů, tj. např. malých vodních elektráren.

Dosud nízké výkupní ceny elektrické energie vyrobené v malých vodních elektrárnách nutí tyto malovýrobce elektrické energie zabývat se možností přímého využití elektrické energie v místě jejich instalace, např. k nabíjení jednostopých a dvoustopých elektrických vozidel v rámci individuální ekologické dopravy, perspektivně i elektrobusů v rámci hromadné ekologické dopravy a současně i k provozu tepelných čerpadel v budovách, kde jsou malé vodní elektrárny instalovány.

Navrhované řešení

Elektrická vozidla jednostopá (elektrická kola s pomocným elektrickým pohonem, skládací elektrické skútry a elektrické skútry klasické konstrukce, dvoustopá elektrická vozidla – sedany a pick-upy) a elektrobusy jsou v současné době nabíjeny z rozvodné elektrické sítě, obvykle nabíjecím režimem, který odpovídá době nabíjení zcela vybité baterie v délce 6 až 8 hodin, většinou v nočních hodinách při využití nižší cenové sazby elektrické energie.

Obr. 1.

Cestou ke zvýšení využití elektrické energie z malých vodních elektráren je nabíjení elektrických vozidel, v místě instalace těchto elektráren za použití jejich rychlého nabíjení, které odpovídá době 45 až 90 minut pro zcela vybitou akumulátorovou baterii.

Přímé nabíjení elektrických vozidel z malých vodních elektráren umožňuje odstranění ztrát elektrické energie, které vznikají při jejím převodu v místě její výroby do elektrické sítě a zpět, jež u stabilní rozvodné elektrické sítě činí 10 % a u nestabilní rozvodné sítě až 20 %.

Rychlé nabíjení akumulátorových baterií elektrických vozidel umožňuje zvýšit účinnost nabíjení těchto baterií vůči klasickým způsobům nabíjení z dosavadních 70 až 85 % podle typu baterie na 95 až 98 % při použití jejich rychlého nabíjení.

Celkově lze tedy konstatovat, že rychlé nabíjení elektrických vozidel přímo z malých vodních elektráren umožňuje zvýšení využití elektrické energie vůči nabíjení z rozvodné elektrické sítě v průměru o 29 % u stabilní elektrické sítě a o 39 % u nestabilní elektrické sítě.

Rychlé nabíjení akumulátorových baterií elektrických vozidel navíc umožňuje dvojnásobné až trojnásobné prodloužení životnosti akumulátorových baterií a současně výrazné prodloužení denního dojezdu elektrických vozidel, jež činí u dvoustopých vozidel až 180 km a u elektrobusů až 240 km.

Vedle uvedených úspor elektrické energie je využití elektrické energie získané z těchto elektráren výhodné pro jejich majitele i s ohledem na úspory elektrické energie při zajištění provozu tepelných čerpadel, které je možné přímo v budovách, kde jsou tyto elektrárny instalovány, použít k jejich vytápění v zimě a k chlazení v létě a k ohřevu teplé vody.

Obr. 2.

Při vytápění bytových prostorů pomocí tepelných čerpadel dochází k efektivnějšímu využití elektrické energie vyrobené z malých vodních elektráren, a to 2,5krát až 4krát vyššímu podle typu tepelného čerpadla. Např. tepelné čerpadlo s topným faktorem 3,0 spotřebovává pro výrobu 3 kW·h tepla pouze 1 kW·h elektrické energie, je tedy 3krát efektivnější ve srovnání s přímým elektrickým ohřevem.

Použití elektrických vozidel místo vozidel se spalovacími motory současně zlepšuje kvalitu ovzduší i ve volné přírodě, mimo městské aglomerace v místech, kde jsou malé vodní elektrárny umístěny.

Menší dosah dojezdu elektrických vozidel je výrazně vyvážen možností získání elektrické energie, potřebné pro provoz elektrických vozidel v místě bydliště jejich uživatele oproti nutnosti přepravy vozidel se spalovacími motory pro palivo k čerpacím stanicím v místech s výrazně řidší sítí oproti městským aglomeracím.

Použití elektrické energie z malých vodních elektráren v místě jejich instalace k nabíjení elektrických vozidel a provozu tepelných čerpadel je výhodné pro majitele těchto elektráren i s ohledem na stávající nízké výkupní ceny elektrické energie dodávané do rozvodné elektrické sítě. Např. v Rakousku dříve odpovídala tato výkupní cena 0,70 ATS/kW·h a v Německu 0,09 DEM/kW·h.

Společné využití elektrické energie z malých vodních elektráren k provozu elektrických vozidel a tepelných čerpadel je současně perspektivní i z hlediska ekologického, neboť umožní zvyšování podílu obnovitelné energie na provozu elektrických vozidel.