Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2019 vyšlo
tiskem 26. 6. 2019. V elektronické verzi na webu 26. 7. 2019. 

Téma: Kabely, vodiče a kabelová technika; Nářadí, nástroje a zařízení pro práci s kabely

Hlavní článek
Správa aktiv a potřeba diagnostiky v Průmyslu 4.0

Aktuality

Digitální továrna 2.0 na MSV 2019 Digitální továrna 2.0 je jedním z hlavních témat Mezinárodního strojírenského veletrhu…

Historicky nejvyšší grant Evropské unie dostal česko-slovenský energetický projekt ACON Společnosti E.ON Distribuce a Západoslovenská distribuční (ZSD) získaly od Evropské…

Kaufland v Blansku nabízí rychlodobíjecí stanici pro elektromobily Nejnovější lokalitou řetězce Kaufland, která nabízí rychlé dobíjení pro elektromobily, je…

Viceprezidentem asociace ENTSO-E zvolen člen představenstva ČEPS, a.s., Zbyněk Boldiš Zbyněk Boldiš, člen představenstva ČEPS, a.s., byl zvolen do funkce viceprezidenta…

Drony z Fakulty elektrotechnické ČVUT v Praze budou obhajovat vítězství v Abu Dhabi Utkají se o hlavní cenu 1 milion dolarů. Testy systému spolupracujících autonomních dronů…

Logická mobilní hra „Zrecykluj to!“ naučí správně recyklovat elektrozařízení Cílem hry je zábavnou formou širokému publiku vysvětlit, že elektroodpad nepatří do…

Více aktualit

Objev spinového Hallova jevu v polovodičovém čipu

číslo 6/2005

Objev spinového Hallova jevu v polovodičovém čipu

Čtyřčlenný mezinárodní tým fyziků, jehož členem je i prof. Tomáš Jungwirth z Fyzikálního ústavu Akademie věd České republiky, oznámil pozorovaní spinového Hallova jevu. Tento fyzikální objev, učiněný v polovodičovém čipu s vodivou vrstvou tloušťky několika nanometrů, otevírá v mikroelektronice novou a velmi atraktivní možnost zmagnetovat polovodič pomocí elektrického napětí. Na práci se spolu s prof. Jungwirthem podíleli Jörg Wunderlich a Bernd Kaestner z Hitachi Cambridge Laboratory ve Velké Británii a Jairo Sinova z Texas A&M University v USA.

Hallovy jevy jsou pojmem dobře známým jak ve fyzice, tak i v mnoha mikroelektronických aplikacích. Již v roce 1879 objevil americký fyzik Edwin Herbert Hall (*7. 11. 1855, † 20. 11. 1938), že magnetické pole kolmé na elektrický proud způsobuje ve vodiči vychylování volných nosičů elektrického proudu z podélného směru a jejich vytlačování směrem k okraji. Příčinou této odchylky je elektromagnetická Lorentzova síla a důsledkem vznik Hallova napětí Uh mezi protilehlými hranami polovodičové destičky (viz obr.). Hallovo napětí není velké, pohybuje se řádově v milivoltech, a je nepřímo úměrné tloušťce destičky a přímo úměrné proudu, magnetické indukci a tzv. Hallově konstantě daného materiálu. Pomocí Hallova jevu lze indikovat různé druhy materiálů, měřit magnetické pole, modulovat elektrický signál magnetickým polem apod.

Obr. 1.

Princip Hallova jevu

Spinový Hallův jev se liší tím, že místo elektrického náboje se na hraně indukuje magnetizace. První teoretická práce o spinovém Hallově jevu se objevila již v roce 1971. Popisuje proudící elektrony, které v sobě nesou miniaturní magnet – spin a jsou díky srážkám s nečistotami v materiálu odkláněny k hraně vzorku, kde vytvářejí magnetizaci.

V roce 2003 dva týmy, v jednom z nichž pracovali Sinova a Jungwirth, nezávisle došly k závěru, že zmagnetování může nastat i bez srážek. Předpověď tohoto tzv. vlastního spinového Hallova jevu vyvolala širokou teoretickou diskusi o skutečné podstatě jevu i nebývalou experimentální aktivitu, motivovanou jevem samotným, ale i jeho možným využitím v energeticky méně náročných nástupcích dnešních mikroelektronických součástek.

Wunderlich a Kaestner vyvinuli pro měření spinového Hallova jevu mikročip, který detekuje magnetizaci na hraně velmi tenké vodivé vrstvy pomocí zabudovaných svíticích diod. Spolu s Jungwirthem a Sinovou v této speciálně navržené polovodičové struktuře indukovali a analyzovali spinový Hallův jev na základě měřené polarizace vybuzeného diodového záření.

Časopis Physics Today představil tuto práci na straně 17 svého únorového vydání 2005 spolu s nezávislou studií týmu z Kalifornie, která prokázala existenci jevu, i když ve slabší formě, v běžném polovodiči. Paradoxně zatímco chování speciální tenké vrstvy odpovídá spíše vlastnímu spinovému Hallovu jevu, v polovodiči studovaném kalifornskou skupinou hrají srážky elektronů s nečistotami významnou roli.

Fyzikální podstata jevu tedy stále čeká na úplné vysvětlení. Nicméně již dnes otevírá objev cestu k tomu, jak propojit svět polovodičů s mikroelektronickým oborem zvaným spintronika, který v nedávné době způsobil převratné změny v oblasti počítačových pamětí a který doposud využíval spontánní magnetizaci přítomnou v některých kovech.

(Kl)