Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2017 vyšlo
tiskem 28. 6. 2017. V elektronické verzi na webu od 28. 7. 2017. 

Téma: Kabely, vodiče a kabelová technika; Konektory; Software; Značení a štítkování

Hlavní článek
Elektrická izolace a tepelná vodivost

Aktuality

Generační změna ve skupině LAPP S účinností od 1. července 2017 odstoupila Ursula Ida Lapp, spoluzakladatelka skupiny…

Finálové kolo soutěže EBEC přivede do Brna 120 nejlepších inženýrů z celé Evropy Co vše je možné stihnout navrhnout, smontovat a následně odprezentovat během dvou dní? To…

Co si akce „Světlo v praxi“ klade za cíle V České republice se prvním rokem koná akce v oblasti světelné techniky, která chce…

Startuje hlasování veřejnosti o vítězích 9. ročníku ekologické soutěže E.ON Energy Globe V Praze byly 20. 6. 2017 slavnostně představeny nominované projekty 9. ročníku prestižní…

Nejnovější monopost týmu ČVUT eForce FEE Prague Formula se představil na Václavském náměstí Dne 16. června se v dolní části Václavského náměstí prezentoval tým Fakulty…

IQRF Summit 2017 svědkem reálných IoT aplikací Akce zaměřená na reálná řešení v oblasti chytrých měst, budov, domácností, transportu,…

Více aktualit

Inovace v elektromotorech

číslo 12/2006

Inovace v elektromotorech

Gustav Holub

Pro složité výrobní a zpracovatelské stroje, robotiku, obráběcí centra, manipulační techniku atd. jsou elektromotory článkem rozhodujícím o celkové výkonnosti strojů a zařízení a o zvyšování jejich produktivity. Nejdůležitější požadavky zejména na servomotory lze vyjádřit heslem: kompaktnost pohonu, vysoká dynamika, chod bez pulsací točivého momentu a otáček, přesnost polohování a rozsah řízení otáček. Kompaktnost znamená, že z minimálního konstrukčního objemu se dosáhne maximálního točivého momentu. Obr. 1. Vysoká dynamika zpravidla znamená velké zrychlení, tj. vysoký urychlovací moment kombinovaný s nepatrným setrvačným momentem. Polohovací přesností a plynulým, rovnoměrným chodem bez pulsací se rozumí optimální hodnoty zejména za chodu při zatížení, ale i naprázdno.

Jako servomotory se většinou osvědčují synchronní stroje buzené permanentními magnety v rotoru, které jsou v porovnání s asynchronním provedením s klecovým rotorem nakrátko kompaktnější a dynamičtější. Navíc vykazují v celém rozsahu řízení otáček vyšší účinnost. Synchronní motory mají převážně přirozené vzduchové chlazení bez ventilace. U větších motorů se používá cizí ventilace nebo také kapalinové chlazení statoru s vinutím.

Obr. 2.

Obr. 1. Příklad statorového „zubového“ vinutí synchronního servomotoru s vysokým obsahem mědi a měrným výkonem (Lenze)
Obr. 2. Vysokomomentový vestavný vícepólový synchronní motor s vnitřním rotorem (vlevo) a vnějším rotorem (vpravo) firmy Octacom

Pro další zvýšení kompaktnosti bez růstu výrobních nákladů se výrobci motorů již několik let snaží o zjednodušení techniky navíjení statoru. Mnozí z nich zavedli u synchronních strojů techniku tzv. zubových cívek, kde se několik relativně málo koncentrických cívek navíjí okolo jednotlivých statorových zubu, resp. pólů. Vlivem vysokého plnění měděným vodičem a malými čely vinutí se motory stávají kompaktnějšími. Tuto techniku lze lépe automatizovat než dosavadní techniku vtahování do drážek.

Obr. 3.

Obr. 3. Účinnost energeticky úsporných asynchronních motorů třídy eff 1 a eff 2 firmy ABB ve srovnání s hodnotami podle NEMA

Ve snaze o další využití měrného momentu lze pozorovat trend vývoje konstrukcí s vyššími počty pólů; to ale vede k omezení rozsahu řízení otáček. Uvedené řešení se využívá u tzv. vysokomomentových pomaloběžných synchronních motorů. U těchto strojů se většinou uplatňuje kapalinové chlazení statoru. Zmíněné stroje je nejvhodnější použít jako přímé, bezpřevodové stroje pro rotační aplikace s vysokým točivým momentem a nízkými otáčkami, např. v papírenském průmyslu nebo ve výrobě a zpracování syntetických hmot. Jestliže se dimenzují a volí správně pro daný stroj, mají tyto motory velké technologické přednosti.

Ve spojitosti s vysokým počtem pólů a omezeným rozsahem otáček je při dalším vývoji těchto motorů zajímavým tématem pro zjednodušení statorového vinutí a zvýšení kompaktnosti motorů tzv. technika využití vyšších harmonických. Uvedený postup využívá vysokopólové vyšší harmonické statoru k tvorbě točivého momentu, jenž se pak může kombinovat s relativně vysokou indukcí ve vzduchové mezeře.

Obr. 4.

Obr. 4. Jednoduchý typ mechatronického pohonu s integrovaným převodovým motorem a měničem kmitočtu (Nord)

Trend kompaktních, dynamičtějších motorů s jednoduchou a cenově příznivou konstrukcí ovlivňuje i vývojáře standardních asynchronních motorů. Ti se zaměřují na vývoj energeticky úsporných strojů. Jde o motory s vysokými účinnostmi dosahovanými větším objemem aktivních materiálů (měď a plechy) a nově také vlivem tlakově litých měděných rotorových tyčí a kruhů nakrátko místo dosavadních hliníkových. Hodnoty účinnosti těchto inovovaných motorů některých evropských firem dokonce překračují předepsané požadavky standardu NEMA (National Electrical Manufacturers Association, Národní sdružení elektrotechnických výrobců) v USA a kanadských norem (viz příklad motorů firmy ABB v obr. 3). Již několik let je v USA, Kanadě a Číně patrná snaha zavádět energeticky úsporné motory s hodnotami vyššími, než jaké platí v Evropě. U motorů s vysokou třídou účinnosti eff 1 se mají ztráty snížit o dalších přibližně 10 až 15 %.

Podle mínění evropských výrobců motorů je to ekonomicky diskutabilní, neboť výrobní náklady rostou exponenciálně a očekávaný tržní podíl motorů s vysokou účinností bude velmi malý. Naproti tomu lze, díky optimální elektronické regulaci a redukci mechanických ztrát (např. v převodových mechanismech), dosáhnout značné energetické úspory různými mechatronickými řešeními elektropohonů, maximální integrací jednotlivých komponent nebo rekuperací brzdné energie do sítě.
[Konstrukter, 2006, Sonderheft, s. 8.]