Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 11/2016 vyšlo tiskem
7. 11. 2016. V elektronické verzi na webu od 1. 12. 2016. 

Téma: Rozváděče a rozváděčová technika; Točivé stroje a výkonová elektronika

Hlavní článek
Lithiové trakční akumulátory pro elektromobilitu

Aktuality

Fakulta elektrotechnická je na špici excelentního výzkumu na ČVUT Expertní panely Rady vlády pro výzkum, vývoj, inovace (RVVI) vybraly ve II. pilíři…

Švýcaři v referendu odmítli uzavřít jaderné elektrárny dříve V referendu hlasovalo 45 procent obyvatel, z toho 54,2 procent voličů řeklo návrhu na…

Fakulta elektrotechnická ČVUT v Praze pořádá 25. 11. 2016 den otevřených dveří Fakulta elektrotechnická ČVUT v Praze pořádá 25. listopadu od 8.30 hodin Den otevřených…

Calliope mini – multifunkční deska Calliope mini poskytuje kreativní možnosti pro každého. A nezáleží na tom, zda jde o…

Ocenění v soutěži České hlavičky získal za elektromagnetický urychlovač student FEL ČVUT Student programu Elektronika a komunikace Fakulty elektrotechnické ČVUT v Praze Vojtěch…

Češi v domácnostech více svítí a experimentují se světlem, doma mají přes 48 milionů svítidel Češi začali v domácnostech více svítit a snaží se vytvořit lepší světelné podmínky:…

Více aktualit

Inovace v elektromotorech

číslo 12/2006

Inovace v elektromotorech

Gustav Holub

Pro složité výrobní a zpracovatelské stroje, robotiku, obráběcí centra, manipulační techniku atd. jsou elektromotory článkem rozhodujícím o celkové výkonnosti strojů a zařízení a o zvyšování jejich produktivity. Nejdůležitější požadavky zejména na servomotory lze vyjádřit heslem: kompaktnost pohonu, vysoká dynamika, chod bez pulsací točivého momentu a otáček, přesnost polohování a rozsah řízení otáček. Kompaktnost znamená, že z minimálního konstrukčního objemu se dosáhne maximálního točivého momentu. Obr. 1. Vysoká dynamika zpravidla znamená velké zrychlení, tj. vysoký urychlovací moment kombinovaný s nepatrným setrvačným momentem. Polohovací přesností a plynulým, rovnoměrným chodem bez pulsací se rozumí optimální hodnoty zejména za chodu při zatížení, ale i naprázdno.

Jako servomotory se většinou osvědčují synchronní stroje buzené permanentními magnety v rotoru, které jsou v porovnání s asynchronním provedením s klecovým rotorem nakrátko kompaktnější a dynamičtější. Navíc vykazují v celém rozsahu řízení otáček vyšší účinnost. Synchronní motory mají převážně přirozené vzduchové chlazení bez ventilace. U větších motorů se používá cizí ventilace nebo také kapalinové chlazení statoru s vinutím.

Obr. 2.

Obr. 1. Příklad statorového „zubového“ vinutí synchronního servomotoru s vysokým obsahem mědi a měrným výkonem (Lenze)
Obr. 2. Vysokomomentový vestavný vícepólový synchronní motor s vnitřním rotorem (vlevo) a vnějším rotorem (vpravo) firmy Octacom

Pro další zvýšení kompaktnosti bez růstu výrobních nákladů se výrobci motorů již několik let snaží o zjednodušení techniky navíjení statoru. Mnozí z nich zavedli u synchronních strojů techniku tzv. zubových cívek, kde se několik relativně málo koncentrických cívek navíjí okolo jednotlivých statorových zubu, resp. pólů. Vlivem vysokého plnění měděným vodičem a malými čely vinutí se motory stávají kompaktnějšími. Tuto techniku lze lépe automatizovat než dosavadní techniku vtahování do drážek.

Obr. 3.

Obr. 3. Účinnost energeticky úsporných asynchronních motorů třídy eff 1 a eff 2 firmy ABB ve srovnání s hodnotami podle NEMA

Ve snaze o další využití měrného momentu lze pozorovat trend vývoje konstrukcí s vyššími počty pólů; to ale vede k omezení rozsahu řízení otáček. Uvedené řešení se využívá u tzv. vysokomomentových pomaloběžných synchronních motorů. U těchto strojů se většinou uplatňuje kapalinové chlazení statoru. Zmíněné stroje je nejvhodnější použít jako přímé, bezpřevodové stroje pro rotační aplikace s vysokým točivým momentem a nízkými otáčkami, např. v papírenském průmyslu nebo ve výrobě a zpracování syntetických hmot. Jestliže se dimenzují a volí správně pro daný stroj, mají tyto motory velké technologické přednosti.

Ve spojitosti s vysokým počtem pólů a omezeným rozsahem otáček je při dalším vývoji těchto motorů zajímavým tématem pro zjednodušení statorového vinutí a zvýšení kompaktnosti motorů tzv. technika využití vyšších harmonických. Uvedený postup využívá vysokopólové vyšší harmonické statoru k tvorbě točivého momentu, jenž se pak může kombinovat s relativně vysokou indukcí ve vzduchové mezeře.

Obr. 4.

Obr. 4. Jednoduchý typ mechatronického pohonu s integrovaným převodovým motorem a měničem kmitočtu (Nord)

Trend kompaktních, dynamičtějších motorů s jednoduchou a cenově příznivou konstrukcí ovlivňuje i vývojáře standardních asynchronních motorů. Ti se zaměřují na vývoj energeticky úsporných strojů. Jde o motory s vysokými účinnostmi dosahovanými větším objemem aktivních materiálů (měď a plechy) a nově také vlivem tlakově litých měděných rotorových tyčí a kruhů nakrátko místo dosavadních hliníkových. Hodnoty účinnosti těchto inovovaných motorů některých evropských firem dokonce překračují předepsané požadavky standardu NEMA (National Electrical Manufacturers Association, Národní sdružení elektrotechnických výrobců) v USA a kanadských norem (viz příklad motorů firmy ABB v obr. 3). Již několik let je v USA, Kanadě a Číně patrná snaha zavádět energeticky úsporné motory s hodnotami vyššími, než jaké platí v Evropě. U motorů s vysokou třídou účinnosti eff 1 se mají ztráty snížit o dalších přibližně 10 až 15 %.

Podle mínění evropských výrobců motorů je to ekonomicky diskutabilní, neboť výrobní náklady rostou exponenciálně a očekávaný tržní podíl motorů s vysokou účinností bude velmi malý. Naproti tomu lze, díky optimální elektronické regulaci a redukci mechanických ztrát (např. v převodových mechanismech), dosáhnout značné energetické úspory různými mechatronickými řešeními elektropohonů, maximální integrací jednotlivých komponent nebo rekuperací brzdné energie do sítě.
[Konstrukter, 2006, Sonderheft, s. 8.]