Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 3/2017 vyšlo
tiskem 15. 3. 2017. V elektronické verzi na webu bude ihned. 

Téma: Amper 2017 – 25. mezinárodní elektrotechnický veletrh

Hlavní článek
Problémy elektromobility

Aktuality

MSV 2017 zacílí na Průmysl 4.0, automatizaci, environmentální technologie, dopravu a logistiku Již potřetí se na MSV 2017 upře pozornost na nové trendy průmyslové výroby. Průmysl 4.0 s…

Současné možnosti elektromobility představí AMPER Motion 2017 Největší přehlídka elektromobility v ČR proběhne 21.- 24. 3. na brněnském výstavišti a…

Startuje 9. ročník největší tuzemské ekologické soutěže Odstartoval již 9. ročník největší tuzemské ekologické soutěže E.ON Energy Globe.…

V distribuční soustavě (DS) ČEZ Distribuce, a. s. je vyhlášen kalamitní stav Od 9 h dne 24.2.2017 je vyhlášen kalamitní stav v Karlovarském kraji - okres Karlovy Vary…

Veletrh Věda Výzkum Inovace 2017 zahájí místopředseda vlády Pavel Bělobrádek Letošní ročník Veletrhu Věda Výzkum Inovace zahájí na brněnském výstavišti 28. února 2017…

Chytré lampy PRE potvrdily zhoršenou smogovou situaci v Praze Chytré lampy PRE potvrdily v rámci svého pilotního provozu, že v Holešovicích a…

Více aktualit

Elektrický ohřev mikrovlnný (8)

číslo 6/2005

Elektrický ohřev mikrovlnný (8)

Na obr. 4 je zobrazeno působení mikrovlnného záření na různé druhy materiálů. V tab. 1 jsou uvedeny dielektrické vlastnosti některých materiálů při frekvenci 2,45 GHz. Z rovnice (1) je zřejmé, že absorbovaný výkon P závisí na frekvenci, permitivitě materiálu a intenzitě elektrického pole.

Obr. 1.

Obr. 4. Působení mikrovlnného záření na různé druhy materiálů; a – transparentní materiál, b – materiál odrážející záření, c – materiál absorbující záření, d – smíšený materiál

Při porovnání frekvencí 2,45 a 5,8 GHz je patrné, že odebíraný výkon roste s frekvencí. Teoreticky tedy při stejném množství dodané energie absorbuje materiál při frekvenci 5,8 GHz zhruba dvojnásobek energie než při frekvenci 2,45 GHz.

U mnoha materiálů není poměrná permitivita neměnná, ale závisí na teplotě a frekvenci. U většiny materiálů roste permitivita s frekvencí. Na obr. 5 je zobrazen průběh složek S´a S´´ komplexní permitivity vody při teplotě 25 °C. Maximum S´´ je při frekvenci 18 GHz. Při frekvenci 5,8 GHz je hodnota S´´ asi dvojnásobná než při frekvenci 2,45 GHz. Teoreticky tedy může být pro ohřátí vody na stejnou teplotu spotřebováno při frekvenci 5,8 GHz čtyřnásobné množství energie než při frekvenci 2,45 GHz. To by ale znamenalo podstatné snížení účinnosti. Při frekvenci 2,45 GHz se pohybuje účinnost mikrovlnného ohřevu mezi 70 a 90 %.

3. Průmyslové aplikace mikrovlnného ohřevu

Mikrovlnný ohřev se úspěšně uplatňuje v mnoha průmyslových odvětvích. V potravinářském a farmaceutickém průmyslu umožňuje modernizaci a využívání nových výrobních postupů. Mikrovlnný ohřev je výhodný při rozmrazování hluboce zmrazených materiálů, při pasterizaci a sterilizaci balených potravin (např. mléčných a masných výrobků, šťáv a krájeného chleba). Pasterizace balených potravin zaručuje trvanlivost bez použití konzervačních přísad. Při pasterizaci baleného krájeného chleba prochází chléb tunelovou pecí a během několika minut je celkově ohřát na pasterizační teplotu bez přehřátí povrchové kůrky nebo změny chuťových vlastností.

Obr. 2.

Obr. 5. Závislost složek komplexní permitivity e´ a e´´ vody při teplotě 25 °C na frekvenci

Spotřeba energie mikrovlnného zařízení je ve srovnání s konvenční pasterizací asi o 50 % nižší a doba pasterizace se zkrátí na 20 %. Mikrovlnné zařízení pro pasterizaci zaujímá ve srovnání s plynovou pecí pouze asi 10 % prostoru. V mikrovlnném rozmrazovacím zařízení o výkonu 120 kW lze během jedné hodiny ohřát 3 t balených potravin z teploty –18 °C na –2 °C.

Ve výrobě plastů a v gumárenském průmyslu se mikrovlnný ohřev využívá např. při ohřevu granulátů plastů před vytlačovacími lisy, při předehřívání pryže před vulkanizací a při vytvrzování výrobků ze skleněných vláken. Při výrobě epoxidových vysokonapěťových izolátorů se při mikrovlnném ohřevu na teplotu 80 až 100 °C zkracuje formovací proces o 15 až 45 %. Při mikrovlnném ohřevu keramických materiálů se doba sintrace zkracuje o 5 až 30 %.

Obr. 3.

Obr. 6. Schematické uspořádání mikrovlnného tunelového ohřívacího zařízení; 1 – ohřívaný materiál, 2 – mikrovlnný modul, 3 – ohřívací tunel, 4 – absorbér mikrovln, 5 – transportní pás

Současná mikrovlnná zařízení mají výkony 100 kW i více, vykazují velmi dobrou účinnost, lze je přizpůsobit nejrůznějším výrobním procesům a umožňují optimální kombinaci s konvenčními způsoby ohřevu.

4. Konstrukční uspořádání průmyslových mikrovlnných zařízení

Mikrovlnné pásové sušičky se vyrábějí pro výkony 8 až 150 kW, délku dopravního pásu 5 až 30 m a šířku pásu 0,2 až 1 m. Maximální sušicí teploty jsou 230 °C. Přívod mikrovlnné energie je ze čtyř stran, takže je zaručeno homogenní ohřátí sušeného materiálu. Jako zdroje mikrovlnného záření se obvykle používají robustní vzduchem chlazené magnetrony o výkonu 800 kW. Funkce magnetronů a vysokonapěťových transformátorů je samostatně jištěna. Na přání se dodává např. plynulá regulace výkonu a plynulé řízení vlhkosti vzduchu.

Na obr. 6 je schematické uspořádání mikrovlnného tunelového ohřívacího zařízení. Ohřívané předměty procházejí tunelem na dopravním pásu. Ohřívací zařízení je vytvořeno několika mikrovlnnými moduly, které umožňují požadované odstupňování teplot. Moduly jsou sestaveny tak, aby netěsnosti mezi nimi byly omezeny na přípustné hodnoty a záření nemohlo pronikat do okolí.

(pokračování)