We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

Wi-fi on rays of light—100 times faster, and never overloaded

21. 3. 2017 | Eindhoven University of Technology | www.tue.nl

Slow wi-fi is a source of irritation that nearly everyone experiences. Wireless devices in the home consume ever more data, and it’s only growing, and congesting the wi-fi network. Researchers at Eindhoven University of Technology have come up with a surprising solution: a wireless network based on harmless infrared rays. The capacity is not only huge (more than 40Gbit/s per ray) but also there is no need to share since every device gets its own ray of light.

The system conceived in Eindhoven is simple and, in principle, cheap to set up. The wireless data comes from a few central “light antennas’” for instance mounted on the ceiling, which are able to very precisely direct the rays of light supplied by an optical fiber. Since there are no moving parts, it is maintenance-free and needs no power: the antennas contain a pair of gratings that radiate light rays of different wavelengths at different angles (‘passive diffraction gratings’). Changing the light wavelengths also changes the direction of the ray of light. Since a safe infrared wavelength is used that does not reach the vulnerable retina in your eye, this technique is harmless.

Wireless network based on light

Current wi-fi uses radio signals with a frequency of 2.5 or 5 gigahertz. The system conceived at TU Eindhoven uses infrared light with wavelengths of 1500 nanometers and higher; this light has frequencies that are thousands of times higher, some 200 terahertz, which makes the data capacity of the light rays much larger.

Read more at Eindhoven University of Technology

Image Credit: Pexels

-jk-