We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 6/2019 was released on June 6th 2019. Its digital version will be available on June 24th 2019.

Topic: Rotating electrical machines, drives and power electronics; Electromobility

Main Article
Hybrid drive of shunting locomotive

SVĚTLO (Light) 3/2019 was released on June 11th 2019. Its digital version will be available on July 17th 2019.

Fairs and exhibitions
Euroluce 2019 by designers eyes
Exhibition Light in architecture 2019
Amper 2019 in capture of sophisticated technologies

Refreshing our memory
Lighting glass from Kamenný pahorek

A novel technique that uses quantum light to measure temperature at the nanoscale

06.05.2019 | Phys.org | www.phys.org

Being able to measure, and monitor, temperatures and temperature changes at miniscule scales—inside a cell or in micro and nano-electronic components—has the potential to impact many areas of research from disease detection to a major challenge of modern computation and communication technologies, how to measure scalability and performance in electronic components.

A collaborative team, led by scientists from the University of Technology Sydney (UTS), developed a highly-sensitive nano-thermometer that uses atom-like inclusions in diamond nanoparticles to accurately measure temperature at the nanoscale. The sensor exploits the properties of these atom-like diamond inclusions on the quantum level, where the limits of classical physics no longer apply.

Temperature monitoring in nanoscale

Diamond nanoparticles are extremely small particles—up to 10,000 times smaller than the width of a human hair—that fluoresce when illuminated with a laser. "The method is immediately deployable. We are currently using it for measuring temperature variations both in biological samples and in high-power electronic circuits whose performance strongly rely on monitoring and controlling their temperature with sensitivities and at a scale hard to achieve with other methods," said Senior Investigator, Dr. Carlo Bradac, UTS School of Mathematical and Physical Sciences.

Read more at Phys.org

Image Credit: Dr. Trong Toan Tran

-jk-