We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2019 was released on November 6th 2019. Its digital version will be available on December 2nd 2019.

Topic: Electrical switchboards and switchboards technologies; substations

Main Article
The cause of mechanic vibration of synchronous mining engines by Palašer and its removal

SVĚTLO (Light) 5/2019 was released on September 16th 2019. Its digital version will be available immediately.

Professional organizations activities
International conference LIGHT (SVĚTLO) 2019 – 6th announcement
We participated in International commission on illumination CIE 2019 congress in Washington
Technical colloquium SLOVALUX 2019

Fairs and exhibitions
Inspire with boho styl and design of Far East at autumn fair FOR INTERIOR

3D-Printed Plastics With High Performance Electrical Circuits

06.11.2019 | Rutgers University | www.rutgers.edu

Rutgers engineers have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile drones and better-performing small satellites, biomedical implants and smart structures.

They used pulses of high-energy light to fuse tiny silver wires, resulting in circuits that conduct 10 times more electricity than the state of the art, according to a study in the journal Additive Manufacturing. By increasing conductivity10-fold, the engineers can reduce energy use, extend the life of devices and increase their performance.

3D printed circuits

Our innovation shows considerable promise for developing an integrated unit – using 3D printing and intense pulses of light to fuse silver nanoparticles – for electronics,” said senior author Rajiv Malhotra, an assistant professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering at Rutgers University–New Brunswick. Next steps include making fully 3D internal circuits, enhancing their conductivity and creating flexible internal circuits inside flexible 3D structures, Malhotra said.

Read more at Rutgers University

Image Credit: Md Naim Jahangir

-jk-