Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 1/2017 vyšlo
tiskem 18. 1. 2017. V elektronické verzi na webu od 17. 2. 2017. 

Téma: Elektrotechnologie; Materiály pro elektrotechniku; Nástroje a pomůcky; Značení

Hlavní článek
Analýza dat fotovoltaického systému během zatmění Slunce
Rizikovost zapojení biometrických identifikačních systémů

Aktuality

Fakulta elektrotechnická ČVUT v Praze představí zájemcům o studium moderní techniku i její historii Fakulta elektrotechnická ČVUT v Praze pořádá v pátek 20. ledna od 8.30 hodin první…

Loňská výroba Temelína by stačila k pokrytí téměř roční spotřeby českých domácností Přesně 12,1 terawatthodin elektřiny (TWh) loni vyrobila Jaderná elektrárna Temelín. Je to…

Osmý ročník Robosoutěže Fakulty elektrotechnické ČVUT v Praze ovládli studenti Gymnázia Zlín V pátek 16. prosince se v Zengerově posluchárně Fakulty elektrotechnické ČVUT na Karlově…

Společnost ABF převzala značku projektu SVĚTLO V ARCHITEKTUŘE Specializovanou výstavu svítidel, designu a příslušenství s názvem SVĚTLO V ARCHITEKTUŘE…

Chytré lampy v Praze Do hlavního města Prahy vstoupily „chytré lampy“. Nová technologie je součástí chytrých…

Fakulta elektrotechnická ČVUT v Praze zve na finále ROBOSOUTĚŽE Zajímavá technické řešení a soutěžní napětí nabídne 16. prosince finále letošní…

Více aktualit

Vertikální turbíny – budoucnost větrných farem?

25.07.2011

Podle vědců z Caltechu (California Institute of Technology, Kalifornský ústav techniky), kteří se zabývali unikátní studií na experimentální dvouakrové větrné farmě na severu okresu Los Angeles, lze zvýšit výrobu elektřiny z větrných elektráren řádově až desetkrát prostou optimalizací rozmístění vertikálních turbín na dané ploše větrné farmy.
 
Řešením by mělo být použití vertikálních turbín u větrných elektráren. U klasických, tj. horizontálně řešených větrných elektráren je třeba velký rozestup mezi jednotlivými turbínami, aby se jednak jejich rotující lopatky vzájemně nedotýkaly, jednak aby nedocházelo k jejich negativnímu aerodynamickému ovlivňování. Výsledkem je v tomto případě velmi špatná účinnost využití disponibilní energie větru v daném prostoru větrné farmy a také neefektivní nakládání s pozemkovým fondem.
 
Na zmíněné experimentální větrné farmě, známé také jako polní laboratoř pro optimalizovanou větrnou energii (FLOWE – Field Laboratory for Optimized Wind Energy), je instalováno 24 větrných elektráren s vertikálně řešenými rotory připomínajícími obří šlehače (viz obr.) o výšce 10 m a šířce 1,2 m. Toto řešení není na rozdíl od horizontálních větrných elektráren zaměřeno na design, ale na maximalizaci efektivity využití energie větru v malých výškách při zemi. Toto v praxi znamená, že lze získat dostatečně velké množství energie pomocí menších, levnějších a environmentálně méně rušivých vertikálních turbín. Vertikální turbíny představují pro tento účel ideální řešení, protože je lze umístit velmi blízko sebe, a zachytit tak téměř všechnu energii větru vanoucího větrnou farmou, a dokonce i nad ní. Dalšího zvyšování účinnosti lze u tohoto řešení dosáhnout vhodnou konfigurací určitého počtu těchto větrných elektráren.
 
Při experimentu provedeném v polní laboratoři pro optimalizovanou větrnou energii v roce 2010 týmem vědců z Caltechu vyrobilo šest vertikálních turbín výkon od 27 do 47 W na čtvereční metr plochy, zatímco elektrárny s horizontálními turbínami srovnatelné velikosti vyrobí pouze 2 až 3 W na čtvereční metr.

Tiskové materiály Caltech.]